High Performance Computing
In Computational Fluid Dynamics and Aeroacoustics

Personal page of A. Gorobets

Up

Journal papers:
  1. A. Gorobets, A. Duben, V. Sapozhnikov. GPU Implementation of Turbulence Modeling Features for High-Fidelity Supercomputer Simulations // RuSCDays 2025, LNCS 16196, pp. 1-15, 2026.
  2. A. V. Gorobets, N. S. Zhdanova, V. G. Bobkov. Towards Industrial Applicability of CFD Methodology for Massively-Parallel Hybrid Systems // Mathematical Models and Computer Simulations, Vol. 17, Suppl. 1, pp. S11-S21, 2025.
  3. F. X. Trias, J. Ruano, A. Duben, A. Gorobets. A rational length scale for large-eddy simulation of turbulence on anisotropic grids // Physics of Fluids (Q1, RNF) 37, 085239 (2025)
  4. A.P. Duben, A.V. Gorobets. Application-Specific Parallel Linear Solver for Nonlinear Harmonics Method with Implicit Time Integration // Supercomputing Frontiers and Innovations, 2025, Vol. 12, No. 1, pp. 60-72.

  5. I.V. Abalakin, P.A. Bakhvalov, V.G. Bobkov, A.P. Duben, A.V. Gorobets, T.K. Kozubskaya, P.V. Rodionov, N.S. Zhdanova. NOISEtte CFD&CAA Supercomputer Code for Research and Applications // Supercomputing Frontiers and Innovations, 2024, 11(2), 78˜101
  6. A. Gorobets. Improving the Robustness and Applicability of Higher-accuracy EBR Schemes // Lobachevskii Journal of Mathematics (Scopus, WoS, ISSN 1995-0802, RNF), 2024, Vol. 45, No. 10, pp. 5002–5013
  7. F.X. Trias, X. Alvarez-Farre, A. Alsalti-Baldellou, A. Gorobets, A. Oliva. An efficient eigenvalue bounding method: CFL condition revisited // Computer Physics Communications (Q1, SCOPUS, WOS), Vol. 305, 2024, 109351
  8. Trias, F.X., Alvarez-Farre, X., Santos, D., Gorobets, A., Oliva, A. DNS and LES of Buoyancy-Driven Turbulence at High Rayleigh Numbers: Numerical Methods and Subgrid-Scale Models. ERCOFTAC Series (SCOPUS, GZ), 2024, 31, 324–330
  9. A. Alsalti-Baldellou, G. Colomer, J. A. Hopman, X. Alvarez-Farre, A. Gorobets, F.-X. Trias, C.-D. Perez-Segarra, A. Oliva. On the feasibility of overnight industrial high-fidelity simulations of CSP technologies on modern HPC systems. Journal of Physics: Conference Series (SCOPUS, GZ), 2024, 2766(1), 012090
  10. Trias, F.X., Gorobets, A., Oliva, A. On a proper tensorial subgrid heat flux model for LES. Journal of Physics: Conference Series (SCOPUS, GZ), 2024, 2766(1), 012068
  11. A.Alsalti-Baldellou, X.Alvarez-Farre, G.Colomer, A.Gorobets, C.D.Perez-Segarra, A.Oliva and F.X.Trias. Lighter and faster simulations on domains with symmetries // Computers & Fluids (Q1, SCOPUS, WOS), 275:106247, 2024.
  12. À. Â. Ãîðîáåö, Ñ. À. Ñóêîâ, À. Ð. Ìàãîìåäîâ. Ãåòåðîãåííàÿ ïàðàëëåëüíàÿ ðåàëèçàöèÿ ìíîãîñåòî÷íîãî ìåòîäà ñ ïîëíîé àïïðîêñèìàöèåé â ïðîãðàììíîì êîìïëåêñå NOISEtte // Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå (Scopus, RNF, KIAM) 2024 ã., òîì 36, #2, 129–146.
    A. V. Gorobets, S. A. Soukov,A. R. Magomedov. Heterogeneous Parallel Implementation of a Multigrid Method with Full Approximation in the NOISEtte Code. Mathematical Models and Computer Simulations, 2024, Volume 16, Issue 4, Pages 609˜619 https://doi.org/10.1134/S2070048224700261

  13. A. V. Gorobets. An Approach to the Implementation of the Multigrid Method with Full Approximation for CFD Problems // Computational Mathematics and Mathematical Physics (Scopus, WoS, Q2, RNF, KIAM, FRC CSC), 2023, Vol. 63, No. 11, pp. 2150–2161.
  14. Gorobets, A.V., Duben, A.P., Kozubskaya, T.K., Rodionov, P.V. Approaches to the Numerical Simulation of the Acoustic Field Generated by a Multi-Element Aircraft Wing in High-Lift Configuration // Mathematical Models and Computer Simulations (SCOPUS, RFBR, KIAM, Lom), 2023, 15(1), pp. 92–108. https://doi.org/10.1134/S2070048223010088 Source text: À.Â. Ãîðîáåö, À.Ï. Äóáåíü, Ò.Ê. Êîçóáñêàÿ, Ï.Â. Ðîäèîíîâ. Ïîäõîäû ê ÷èñëåííîìó ìîäåëèðîâàíèþ àêóñòè÷åñêîãî ïîëÿ, ñîçäàâàåìîãî êðûëîì ñàìîëåòà ñ ìåõàíèçàöèåé íà ðåæèìå ïîñàäêè // Ìàòåì. ìîäåëèðîâàíèå, 34:7 (2022), 24–48
  15. Alexey Duben, Andrey Gorobets. Scale-resolving simulation of a low-pressure turbine on hybrid supercomputers. Computers & Fluids (Q1, SCOPUS, WOS, ÐÍÔ, ...) 2023, 105984. https://doi.org/10.1016/j.compfluid.2023.105984
  16. Ìàãîìåäîâ À. Ð., Ãîðîáåö À. Â. Ãåòåðîãåííàÿ ðåàëèçàöèÿ ïðåäîáóñëàâëèâàòåëåé íà îñíîâå ìåòîäà Ãàóññà–Çåéäåëÿ äëÿ ðàçðåæåííîé áëî÷íîé ìàòðèöû. Òðóäû «Ïðèêëàäíàÿ ìàòåìàòèêà è èíôîðìàòèêà» (SCOPUS, ÐÍÔ, ÔÈÖ ÈÓ, Ëîì, ÖÊÏ ÈÏÌ). 2023. 72. 38–45. Magomedov, A.R., Gorobets, A.V. Heterogeneous Implementation of Preconditioners Based on Gauss–Seidel Method for Sparse Block Matrices. Computational Mathematics and Modeling, 2022, 33(4), pp. 438–442

  17. Andrey V. Gorobets. Adapting a Scientific CFD Code to Industrial Applications on Hybrid Supercomputers. Supercomputing Frontiers and Innovation (SCOPUS, RSCF, Lom, KIAM), Vol. 9 No. 4 (2022), pp. 49-54. https://doi.org/10.14529/jsfi220405
  18. A.V. Gorobets. CFD Simulations on Hybrid Supercomputers: Gaining Experience and Harvesting Problems // In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science (SCOPUS), vol 13708, pp 63–76. Springer, Cham.
  19. Duben, A., Gorobets, A., Soukov, S., Marakueva, O., Shuvaev, N., Zagitov, R. Supercomputer Simulations of Turbomachinery Problems with Higher Accuracy on Unstructured Meshes. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2022. Lecture Notes in Computer Science (SCOPUS), vol 13708. Springer, Cham. https://doi.org/10.1007/978-3-031-22941-1_26
  20. À.Â. Âîëêîâ, Â.Â. Âëàñåíêî, Ñ.Â. Ìèõàéëîâ, Ñ.Ñ. Ìîëåâ, Â.Þ. Ïîäàðóåâ, À.Â. Ãîðîáåö, Ï.À. Áàõâàëîâ, À.Ï. Äóáåíü, Ñ.À. Ñóêîâ. Ðàçðàáîòêà ýôôåêòèâíîãî ïàðàëëåëüíîãî êîäà äëÿ ðåøåíèÿ óðàâíåíèé Íàâüå-Ñòîêñà íà ñóïåðêîìïüþòåðå ñ èñïîëüçîâàíèåì ÿâíîãî ìåòîäà Ãàëåðêèíà è äðîáíîãî øàãà ïî âðåìåíè. Ñáîðíèê òðóäîâ ÖÀÃÈ ÐÀÍ, 2022 (Ïðèíÿòà ê ïå÷àòè)
  21. À. Â. Ãîðîáåö, À. Ï. Äóáåíü, Ò. Ê. Êîçóáñêàÿ, Ï. Â. Ðîäèîíîâ. Ïîäõîäû ê ÷èñëåííîìó ìîäåëèðîâàíèþ àêóñòè÷åñêîãî ïîëÿ, ñîçäàâàåìîãî êðûëîì ñàìîëåòà ñ ìåõàíèçàöèåé íà ðåæèìå ïîñàäêè // Ìàòåì. ìîäåëèðîâàíèå, 34:7 (2022), 24–48
  22. Alexey P. Duben, Jesus Ruano, Andrey V. Gorobets, Joaquim Rigola and F.Xavier Trias. Evaluation of Enhanced Grey Area Mitigation Approaches Based on Jet Aerodynamics and Aeroacoustics Simulations. AIAA (SCOPUS, WoS, Q1; Lom, Kurch, KIAM; GZ) 2022. https://doi.org/10.2514/1.J062116
  23. Andrey V. Gorobets, Alexey P. Duben. Technology for Supercomputer Simulation of Turbulent Flows in the Good New Days of Exascale Computing Supercomputing Frontiers and Innovation (SCOPUS, CMU, Lom, KIAM) . Vol. 8 No. 4 (2021) https://doi.org/10.14529/jsfi210401
  24. Nicolas Valle Marchante, Xavier Alvarez Farre, Andrey Gorobets, Jesus Castro, Assensi Oliva, F.Xavier Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications (SCOPUS, WoS, Q1; GZ; Lom, KIAM). Volume 271. 2022. 108230. https://doi.org/10.1016/j.cpc.2021.108230
  25. Andrey Gorobets, Pavel Bakhvalov. Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers Computer Physics Communications (SCOPUS, WoS, Q1; RNF; Lom, KIAM). Vol 271. 2022. 108231. https://doi.org/10.1016/j.cpc.2021.108231

  26. A. Pont-Vilchez, A. Duben, A. Gorobets, A. Oliva, F.X. Trias. New strategies for mitigating the Grey Area in DDES models. AIAA (SCOPUS, WoS, Q1; Lom, Kurch, CMU). Vol. 59 (9), 2021, 3331-3345. https://doi.org/10.2514/1.J059666
  27. X. Alvarez-Farre, A. Gorobets F. X. Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1; Lom, K60, RNF). Vol 214, 2021, 104768 https://doi.org/10.1016/j.compfluid.2020.104768
  28. I.V. Abalakin, P.A. Bakhvalov, V.G. Bobkov, A.V. Gorobets. Parallel Algorithm for Flow Simulation in Rotor–Stator Systems Based on Edge-Based Schemes. Mathematical Models and Computer Simulations, 2021, Vol. 13, No. 1, pp. 172–180. http://doi.org/10.1134/S2070048221010026
    È.À. Àáàëàêèí, Ï.À. Áàõâàëîâ, Â.Ã. Áîáêîâ, À.Â. Ãîðîáåö. Ïàðàëëåëüíûé àëãîðèòì ìîäåëèðîâàíèÿ òå÷åíèÿ â ñèñòåìàõ ðîòîð-ñòàòîð íà îñíîâå ð¸áåðíî-îðèåíòèðîâàííûõ ñõåì. Ìàòåì. ìîäåëèðîâàíèå, 32(6) (2020) 127–140. http://doi.org/10.20948/mm-2020-06-09 (Kurch, KIAM; MD, RFFI)
  29. A. Gorobets, P. Bakhvalov, A. Duben, P. Rodionov. Acceleration of NOISEtte Code for Scale-resolving Supercomputer Simulations of Turbulent Flows. Lobachevskii Journal of Mathematics (ISSN 1995-0802, Scopus, WoS, Q2; Lom, KIAM, RNF). Vol 41, No 8, pp. 1463–1474, 2020. https://doi.org/10.1134/S1995080220080077
  30. F.X.Trias, F.Dabbagh, A.Gorobets, and C.Oliet. On a proper tensor-diffusivity model for large-eddy simulation of buoyancy-driven turbulence. Flow, Turbulence and Combustion (Q1), 105(2), 393-414, 2020. https://doi.org/10.1007/s10494-020-00123-3
  31. F.Dabbagh, F.X.Trias, A.Gorobets, and A.Oliva. Flow topology dynamics in a three-dimensional phase space for turbulent Rayleigh-Benard convection. Physical Review Fluids (Q1), 5:024603, 2020. https://doi.org/10.1103/PhysRevFluids.5.024603

  32. Andrey V. Gorobets, Pavel A. Bakhvalov. Improving Reliability of Supercomputer CFD Codes on Unstructured Meshes. Supercomputing Frontiers and Innovations (ISSN: 2409-6008, Scopus; Lom, RNF). 2019. Vol. 6, No. 4, pp. 44-56. http://dx.doi.org/10.14529/jsfi190403
  33. Martin, R., Soria, M., Lehmkuhl, O., Gorobets, A., Duben, A. Noise radiated by an open cavity at low Mach number: Effect of the cavity oscillation mode. International Journal of Aeroacoustics (ISSN: 1475-472X, Scopus, WoS, Q2), 2019, 18(6–7), 647–668. https://doi.org/10.1177/1475472X19871534
  34. A. Pont-Vilchez, F. X. Trias, A. Gorobets, and A. Oliva. Direct Numerical Simulation of Backward-Facing Step flow at Ret = 395 and expansion ratio 2. Journal of Fluid Mechanics (ISSN: 0022-1120, Scopus, WoS, Q1). 2019. Volume 863, pp. 341-363. https://doi.org/10.1017/jfm.2018.1000
  35. F. X. Trias, A. Gorobet, A. Oliva. A New Subgrid Characteristic Length for LES. In: Salvetti M., Armenio V., Frohlich J., Geurts B., Kuerten H. (eds) Direct and Large-Eddy Simulation XI. ERCOFTAC Series (SCOPUS), vol 25. pp. 135-141. 2019. https://doi.org/10.1007/978-3-030-04915-7_19
  36. A. V. Gorobets, M. I. Neiman-Zade, S. K. Okunev, A. A. Kalyakin, S. A. Soukov. Performance of Elbrus-8C Processor in Supercomputer CFD Simulations. Mathematical Models and Computer Simulations. 2019. vol. 11. pp. 914–923. https://doi.org/10.1134/S2070048219060073
    Ãîðîáåö À.Â., Íåéìàí-çàäå Ì.È., Îêóíåâ Ñ.Ê., Êàëÿêèí À.À., Ñóêîâ Ñ.À. Ïðîèçâîäèòåëüíîñòü îòå÷åñòâåííîãî ïðîöåññîðà Ýëüáðóñ-8Ñ â ñóïåðêîìïüþòåðíîì ìîäåëèðîâàíèè çàäà÷ âû÷èñëèòåëüíîé ãàçîâîé äèíàìèêè. Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå, 2019, òîì 31, íîìåð 4, ñòð. 17-32.
  37. F. X. Trias, D. Folch, A. Gorobets, A. Oliva. Spectrally-Consistent Regularization of Navier–Stokes Equations. Journal of Scientific Computing (ISSN: 0885-7474, Scopus, WoS, Q1), 79(2), 992-1014 (2019). (Online 2018) https://doi.org/10.1007/s10915-018-0880-x

  38. Trias F.X., Folch D., Gorobets A., Oliva A. Building Proper Invariants for Large-Eddy Simulation. In: Grigoriadis D., Geurts B., Kuerten H., Frohlich J., Armenio V. (eds) Direct and Large-Eddy Simulation X. ERCOFTAC Series (SCOPUS, ISBN 978-3-319-63211-7, ISSN 1382-4309 Online 2215-1826), vol 24. pp. 165-171. 2018. https://doi.org/10.1007/978-3-319-63212-4_20
  39. N. Zhdanova, A. Gorobets, I. Abalakin. Supercomputer simulations of fluid-structure interaction problems using an immersed boundary method. Supercomputing Frontiers and Innovations (ISSN: 2409-6008, Scopus). 2018. Vol. 5, No. 4, pp. 78-82. http://doi.org/10.14529/jsfi180408
  40. Ï. À. Áàõâàëîâ, À. Â. Ãîðîáåö. Ê âîïðîñó îá ýôôåêòèâíîé ïàðàëëåëüíîé ðåàëèçàöèè âåðøèííî-öåíòðèðîâàííûõ ñõåì íà ñêîëüçÿùèõ ñåòêàõ. Ïðåïðèíò ÈÏÌ ¹ 277, Ìîñêâà, 2018. http://doi.org/10.20948/prepr-2018-277
  41. Ãîðîáåö À.Â., Íåéìàí-çàäå Ì.È., Îêóíåâ Ñ.Ê., Êàëÿêèí À.À., Ñóêîâ Ñ.À. Ïðîèçâîäèòåëüíîñòü ïðîöåññîðà Ýëüáðóñ-8Ñ â ñóïåðêîìïüþòåðíûõ ïðèëîæåíèÿõ âû÷èñëèòåëüíîé ãàçîâîé äèíàìèêè. Ïðåïðèíò ÈÏÌ ¹ 152, Ìîñêâà, 2018. http://doi.org/10.20948/prepr-2018-152
  42. Ñ. À. Ñóêîâ, À. Â. Ãîðîáåö. Ãåòåðîãåííûå âû÷èñëåíèÿ â ðåñóðñîåìêèõ ðàñ÷åòàõ çàäà÷ âû÷èñëèòåëüíîé ãàçîâîé äèíàìèêè. Äîêëàäû àêàäåìèè íàóê: Ìàòåìàòèêà. 2018, Ò. 482, ¹ 4. Ñòð. 389-392. DOI: 10.31857/S086956520003100-3
    S. A. Soukov, A. V. Gorobets. "Heterogeneous Computing in Resource-Intensive CFD Simulations"". Doklady Mathematics (ISSN 1064-5624, Scopus, WoS, ÐÈÍÖ), 2018, Vol. 98, No. 2, pp. 472-474. DOI: 10.1134/S1064562418060194
  43. A.Gorobets. "Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations". Lobachevskii Journal of Mathematics (ISSN: 1995-0802, SCOPUS, WoS). 2018, Vol. 39, No. 4, pp. 524–532. https://doi.org/10.1134/S1995080218040078
  44. A.Gorobets, S.Soukov, P.Bogdanov. "Multilevel parallelization for simulating turbulent flows on most kinds of hybrid supercomputers". Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1). Volume 173, Pages 171-177. 2018. https://doi.org/10.1016/j.compfluid.2018.03.011
  45. X.Alvarez, A.Gorobets, F.X.Trias, R.Borrell, and G.Oyarzun. "HPC2 - a fully portable algebra-dominant framework for heterogeneous computing. Application to CFD". Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1). Volume 173. Pages 285-292. 2018. https://doi.org/10.1016/j.compfluid.2018.01.034
  46. G.Oyarzun, R. Borrell, A. Gorobets, F. Mantovani, A. Oliva. "Efficient CFD code implementation for the ARM-based Mont-Blanc architecture.". Future Generation Computer Systems -- The International Journal of eScience (ISSN: 0167-739X, SCOPUS, WoS, Q1). Volume 79, Part 3, 2018. Pages 786-796 https://doi.org/10.1016/j.future.2017.09.029

  47. G. Oyarzun, R. Borrell, A.Gorobets, A. Oliva. "Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers". International Journal of Computational Fluid Dynamics (ISSN: 1061-8562, SCOPUS, WoS). Volume 31, Issue 9, 2017. Pages 396-411. http://dx.doi.org/10.1080/10618562.2017.1390084
  48. F.X.Trias, A.Gorobets, M.H.Silvis, R.W.C.P.Verstappen, and A.Oliva. "A new subgrid characteristic length for turbulence simulations on anisotropic grids". Physics of Fluids (ISSN: 1070-6631, SCOPUS, WoS, Q1), 29, 115109 (2017) https://doi.org/10.1063/1.5012546
  49. F.Dabbagh, F.X.Trias, A.Gorobets, and A.Oliva. "A priori study of subgrid-scale features in turbulent Rayleigh-Benard convection". Physics of Fluids (ISSN: 1070-6631, SCOPUS, WoS, Q1), 29, 105103 (2017); https://doi.org/10.1063/1.5005842
  50. Ñóêîâ Ñ. À., Ãîðîáåö À. Â., Áîãäàíîâ Ï. Á. "Ïåðåíîñèìîå ðåøåíèå äëÿ ìîäåëèðîâàíèÿ ñæèìàåìûõ òå÷åíèé íà âñåõ ñóùåñòâóþùèõ ãèáðèäíûõ ñóïåðêîìïüþòåðàõ", Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå, 2017 ãîä, òîì 29, íîìåð 8, ñòð. 3-16 (ISSN: 0234-0879, ÐÈÍÖ)
    S. Soukov, A. Gorobets, P. Bogdanov. "Portable Solution for Modeling Compressible Flows on All Existing Hybrid Supercomputers", Mathematical Models and Computer Simulations (SCOPUS), 2018, Vol. 10, Issue 2, pp.135–144. DOI: 10.1134/S2070048218020138

  51. F. Dabbagh, F.X. Trias, A. Gorobets, and A. Oliva. "On the evolution of flow topology in turbulent Rayleigh-Benard convection", Physics of Fluids, 28:115105, 2016. (ISSN: 1070-6631, SCOPUS, WoS, Q1) https://doi.org/10.1063/1.4967495
  52. Ãîðîáåö À. Â. "Ìåòîäèêà âûïîëíåíèÿ êðóïíîìàñøòàáíûõ ðàñ÷åòîâ çàäà÷ ãàçîâîé äèíàìèêè", Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå (ÐÈÍÖ), 2016, òîì 28, íîìåð 4, ñòð. 77-91.
    A. V. Gorobets "The technology of large-scale CFD simulations", Mathematical Models and Computer Simulations (SCOPUS), 2016, vol. 8, Issue 6, pp. 660-670. DOI: 10.1134/S2070048216060089

  53. F.X.Trias, A. Gorobets, and A. Oliva. "Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study", Computers & Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1), 2015, Volume 123, Pages 87–98, doi:10.1016/j.compfluid.2015.09.013
  54. Ãîðîáåö À. Â. "Ïàðàëëåëüíàÿ òåõíîëîãèÿ ÷èñëåííîãî ìîäåëèðîâàíèÿ çàäà÷ ãàçîâîé äèíàìèêè àëãîðèòìàìè ïîâûøåííîé òî÷íîñòè", Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè (ISSN: 0044-4669, ÐÈÍÖ, SCOPUS, WOS), ò. 55, ¹4, ñ. 641-652, 2015. DOI:10.7868/S0044466915040067
    Gorobets A.V. "Parallel technologies for solving CFD problems using high-accuracy algorithms", Comput. math and math physics, 2015, Volume 55, Issue 4, pp 638–649. DOI:10.1134/S0965542515040065
  55. F.X. Trias, D. Folch, A. Gorobets, and A. Oliva. "Building proper invariants for eddy-viscosity subgrid-scale models", Physics of Fluids (ISSN: 1070-6631, SCOPUS, WoS, Q1), 27: 065103, 2015. DOI: 10.1063/1.4921817
  56. H. Zhang, F.X. Trias, A. Gorobets, and A. Oliva. "Direct numerical simulation of a fully developed turbulent square duct flow up to Re_tau=1200", International Journal of Heat and Fluid Flow (SCOPUS, WoS, Q1), 54:258–267, 2015. DOI: 10.1016/j.ijheatfluidflow.2015.06.003
  57. Hao Zhang, F. Xavier Trias, Andrey Gorobets,Dongmin Yang,Assensi Oliva, Yuanqiang Tan,Yong Sheng, "Effect of collisions on the particle behavior in a turbulent square duct flow", Powder Technology (IF 2.3, ISSN 0032-5910, SCOPUS, WoS, Q1), (2015), vol. 269, pp. 320-336, DOI: 10.1016/j.powtec.2014.08.070.

  58. G. Oyarzun, R. Borrell, A. Gorobets, A. Oliva, "MPI-CUDA sparse matrix–vector multiplication for the conjugate gradient method with an approximate inverse preconditioner", Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1), Volume 92, 20 March 2014, Pages 244–252, DOI: 10.1016/j.compfluid.2013.10.035

  59. Ï.Á. Áîãäàíîâ, À.À. Åôðåìîâ, À.Â. Ãîðîáåö, Ñ.À. Ñóêîâ, "Ïðèìåíåíèå ïëàíèðîâùèêà äëÿ ýôôåêòèâíîãî îáìåíà äàííûìè íà ñóïåðêîìïüþòåðàõ ãèáðèäíîé àðõèòåêòóðû ñ ìàññèâíî-ïàðàëëåëüíûìè óñêîðèòåëÿìè", Âû÷èñëèòåëüíûå ìåòîäû è ïðîãðàììèðîâàíèå (ISSN 0507-5386, ÐÈÍÖ), ò.14 (2013), ñòð. 122-134.
    P.B. Bogdanov, A.A. Efremov, A.V. Gorobets, S.A. Sukov, "Using a scheduler for efficient data exchange on hybrid supercomputers with massively-parallel accelerators", Numerical methods and programming, vol. 14 (2013), pp. 122-134.
  60. À.Â. Ãîðîáåö, Ñ.À. Ñóêîâ, Ï.Á. Áîãäàíîâ, "Íà ïóòè ê îñâîåíèþ ãåòåðîãåííûõ ñóïåðâû÷èñëåíèé â ãàçîâîé äèíàìèêå", Èíôîðìàöèîííûå òåõíîëîãèè è âû÷èñëèòåëüíûå ñèñòåìû (ISSN 2071-8632, ÐÈÍÖ), 4/2013, ñ. 15-26.
    A.V. Gorobets, S.A. Soukov, P.B. Bogdanov, "Towards hybrid supercomputing in computational fluid dynamics", Information technologies and computing systems, 4/2013, pp. 15-26.
  61. Andrey Gorobets, F. Xavier Trias, Assensi Oliva, "An OpenCL-based Parallel CFD Code for Simulations on Hybrid Systems with Massively-parallel Accelerators", Procedia Engineering (ISSN: 1877-7058, SCOPUS), 25-th PCFD, Volume 61, 2013, Pages 81–86.
  62. S.A. Soukov, A.V. Gorobets, P.B. Bogdanov, "OpenCL Implementation of Basic Operations for a High-order Finite-volume Polynomial Scheme on Unstructured Hybrid Meshes", Procedia Engineering (ISSN: 1877-7058, SCOPUS), 25-th PCFD, Volume 61, 2013, Pages 76-80.
  63. G. Oyarzun, R. Borrell, A. Gorobets, O. Lehmkuhl, A. Oliva, "Direct Numerical Simulation of Incompressible Flows on Unstructured Meshes Using Hybrid CPU/GPU Supercomputers", Procedia Engineering (ISSN: 1877-7058, SCOPUS), 25-th PCFD, Volume 61, 2013, Pages 87-93.
  64. F. Xavier Trias, Andrey Gorobets, Hao Zhang, Assensi Oliva, "New Differential Operators and Discretization Methods for Eddy-viscosity Models for LES", Procedia Engineering (ISSN: 1877-7058, SCOPUS), 25-th PCFD, Volume 61, 2013, Pages 179-184.
  65. F.X. Trias, A. Gorobets and A. Oliva, "A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity", Journal of Computational Physics (ISSN: 0021-9991, SCOPUS, WoS, Q1), 2013, vol. 253, pp 405-417, DOI: 10.1016/j.jcp.2013.07.021
  66. Ñ. À. Ñóêîâ, À. Â. Ãîðîáåö, Ï. Á. Áîãäàíîâ, Àäàïòàöèÿ è îïòèìèçàöèÿ áàçîâûõ îïåðàöèé ãàçîäèíàìè÷åñêîãî àëãîðèòìà íà íåñòðóêòóðèðîâàííûõ ñåòêàõ äëÿ ðàñ÷åòîâ íà ìàññèâíî-ïàðàëëåëüíûõ óñêîðèòåëÿõ, Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè (ISSN: 0044-4669, ÐÈÍÖ, SCOPUS, WoS), 2013, òîì 53, ¹ 8, ñ. 1360–1373.
    S. A. Soukov, A. V. Gorobets, P. B. Bogdanov, Adaptation and optimization of basic operations for an unstructured mesh CFD algorithm for computation on massively parallel accelerators, Comput. math and math physics 2013, vol. 53, #8, pp 1183-1194.
  67. A. Gorobets, F.X. Trias, A. Oliva, A parallel MPI+OpenMP+OpenCL algorithm for hybrid supercomputations of incompressible flows, Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1), 2013,Volume 88, 15 December 2013, Pages 764–772, DOI: 10.1016/j.compfluid.2013.05.021.
  68. F.X. Trias, A. Gorobets, C.D. Perez-Segarra, and A. Oliva, DNS and regularization modeling of a turbulent differentially heated cavity of aspect ratio 5, International Journal of Heat and Mass Transfer (ISSN: 0017-9310, SCOPUS, WoS, Q1), 57 (1): 171-182, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.09.064

  69. Àáàëàêèí È.Â., Áàõâàëîâ Ï.À., Ãîðîáåö À.Â., Äóáåíü À.Ï., Êîçóáñêàÿ Ò.Ê., Ïàðàëëåëüíûé ïðîãðàììíûé êîìïëåêñ NOISETTE äëÿ êðóïíîìàñøòàáíûõ ðàñ÷åòîâ çàäà÷ àýðîäèíàìèêè è àýðîàêóñòèêè, Âû÷èñëèòåëüíûå ìåòîäû è ïðîãðàììèðîâàíèå (ISSN 0507-5386, ÐÈÍÖ), ò.13 (2012), ñòð. 110-125.
    Abalakin I.V., Bahvalov P.A., Gorobets A.V., Duben A.P., Kozubskaya T.K., Parallel code NOISETTE for large-scale CFD and aeroacoustics simulations, Numerical methods and programming, vol.13 (2012), pp. 110-125.
  70. F.X. Trias, A. Gorobets, C.D. Perez-Segarra, A. Oliva, Numerical simulation of turbulence at lower costs: Regularization modeling, Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1), vol. 80, pp 251-259, 2013, Available online 3-APR-2012, ISSN 0017-9310, DOI 10.1016/j.compfluid.2012.03.002
  71. J. E. Jaramillo, F. X. Trias, A. Gorobets, C. D. Perez-Segarra, A. Oliva, DNS and RANS modelling of a Turbulent Plane Impinging Jet, International Journal of Heat and Mass Transfer (ISSN: 0017-9310, SCOPUS, WoS, Q1), Volume 55, Issue 4, 31 January 2012, Pages 789–801, DOI: 10.1016/j.ijheatmasstransfer.2011.10.031
  72. Trias, F.X., Verstappen, R., Gorobets, A., Oliva, A. Spectrally-consistent regularization modeling of turbulent natural convection flows. Journal of Physics: Conference Series (Scopus). 2012. 395(1),012123

  73. Trias, F.X., Gorobets, A., Oliva, A., Verstappen, R.W.C.P. Regularization modeling of buoyancy-driven flows. ERCOFTAC Series. 2011. 15, 21-26
  74. F. X. Trias, A. Gorobets, R. W. C. P. Verstappen and A. Oliva, Symmetry-preserving regularization of wall-bounded turbulent flows Journal of Physics: Conference Series (ISSN: 1742-6588, SCOPUS ID 130053) 318 (2011) 042060, Volume 318, Section 4, Issue 4 (2011), DOI:10.1088/1742-6596/318/4/042060
  75. À.Â.Ãîðîáåö, Ñ.À.Ñóêîâ, À.Î.Æåëåçíÿêîâ, Ï.Á.Áîãäàíîâ, Á.Í.×åòâåðóøêèí, “Ïðèìåíåíèå GPU â ðàìêàõ ãèáðèäíîãî äâóõóðîâíåâîãî ðàñïàðàëëåëèâàíèÿ MPI+OpenMP íà ãåòåðîãåííûõ âû÷èñëèòåëüíûõ ñèñòåìàõ", Âåñòíèê ÞÓðÃÓ. Ñåðèÿ: Âû÷èñëèòåëüíàÿ ìàòåìàòèêà è èíôîðìàòèêà (ISSN: 2305-9052, ÐÈÍÖ), ¹25 (242), 2011, 76-86
    A.V. Gorobets, S.A. Soukov, P.B. Bogdanov, A.O. Zheleznyakov, B.N. Chetverushkin, “Extension with OpenCL of the two-level MPI + OpenMP parallelization for CFD simulations on heterogeneous systems", Vestnik YUUrGU, #25 (242), 2011, 76-86
  76. A. Gorobets, F. X. Trias, R. Borrell, O. Lehmkuhl, A. Oliva, “Hybrid MPI+OpenMP parallelization of an FFT-based 3D Poisson solver with one periodic direction”, Elsevier, Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1), 49 (2011), pp. 101-109, doi:10.1016/j.compfluid.2011.05.003
  77. A. Gorobets, I. Abalakin, T. Kozubskaya “Solving computational aeroacoustics problems on Lomonosov supercomputer”, Supercomputing in science, education and industry (2nd issue), 2011, 12-18, MSU publishing, ISBN 978-5-211-05978-8
    Ãîðîáåö À.Â., Àáàëàêèí È.Â., Êîçóáñêàÿ Ò.Ê., “Ìîäåëèðîâàíèå çàäà÷ àýðîàêóñòèêè íà ñóïåðêîìïüþòåðå Ëîìîíîñîâ”, Ñóïåðêîìïüþòåðíûå òåõíîëîãèè â íàóêå, îáðàçîâàíèè è ïðîìûøëåííîñòè (2 âûïóñê), 2011, 12-18, Èçäàòåëüñòâî Ìîñêîâñêîãî óíèâåðñèòåòà, ISBN 978-5-211-05978-8

  78. F.X. Trias, R.W.C.P. Verstappen, A. Gorobets, M. Soria, A. Oliva, “Parameter-free symmetry-preserving regularization modelling of a turbulent differentially heated cavity”, Elsevier, Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1), Volume 39, Issue 10, December 2010, Pages 1815–1831, doi:10.1016/j.compfluid.2010.06.016
  79. A. V. Gorobets, S. A. Sukov, F. X. Trias, “Problems of using modern computing systems for direct numerical simulations in fluid dynamics and aeroacoustics”, TsAGI Science Journal (ISSN 1948-2590) , vol. XLI, #2, pages 217-225, 2010, DOI: 10.1615/TsAGISciJ.v41.i2.100
    À. Â. Ãîðîáåö, Ñ. À. Ñóêîâ, Ô. Õ. Òðèàñ, “Ïðîáëåìû èñïîëüçîâàíèÿ ñîâðåìåííûõ ñóïåðêîìïüþòåðîâ ïðè ÷èñëåííîì ìîäåëèðîâàíèè â ãèäðîäèíàìèêå è àýðîàêóñòèêå”, Ó÷åíûå çàïèñêè ÖÀÃÈ (ISSN 0321-3439, ÐÈÍÖ), òîì XLI, ¹2, ñòð. 217-225, 2010, DOI: 10.1615/TsAGISciJ.v41.i2.100
  80. A. Gorobets, F. X. Trias, M. Soria and A. Oliva, “A scalable parallel Poisson solver for three-dimensional problems with one periodic direction”, Computers and Fluids (ISSN: 0045-7930, SCOPUS, WoS, Q1), 39 (2010) 525-538. DOI: 10.1016/j.compfluid.2009.10.005
  81. F. X. Trias, A. Gorobets, M. Soria, A. Oliva, ”Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Ra-number up to 1011 - Part I: Numerical methods and time-averaged flow”, International Journal of Heat and Mass Transfer (ISSN: 0017-9310, SCOPUS, WoS, Q1), 53 (2010), 665-673
  82. F. X. Trias, A. Gorobets, M. Soria, A. Oliva, ”Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Ra-number up to 1011 - Part II: Heat transfer and flow dynamics”, International Journal of Heat and Mass Transfer (ISSN: 0017-9310, SCOPUS, WoS, Q1), 53 (2010), 674-683

  83. G. I. Savin, B. N. Chetverushkin, A. V. Gorobets, T. K. Kozubskaya, S. A. Sukov, O. I. Vdovikin, B. M. Shabanov, “Gasdynamic and Aeroacoustic Simulations on the MBC-100M Supercomputer”, Doklady Mathematics (ISSN: 1064-5624, SCOPUS, WoS), 2008, Vol. 78, No. 3, pp. 932–935.
    Ã.È.Ñàâèí, Á.Í.×åòâåðóøêèí, Ñ.À.Ñóêîâ, À.Â.Ãîðîáåö, Ò.Ê.Êîçóáñêàÿ, Î.È.Âäîâèêèí, Á.Ì.Øàáàíîâ, “Ìîäåëèðîâàíèå çàäà÷ ãàçîâîé äèíàìèêè è àýðîàêóñòèêè ñ èñïîëüçîâàíèåì ðåñóðñîâ ñóïåðêîìïüþòåðà ÌÂÑ-100Ê”, Äîêëàäû àêàäåìèè íàóê (ISSN: 0869-5652, ÐÈÍÖ), 2008, òîì 423, ¹3, ñ. 312-315.
  84. A .V. Gorobets, T.K. Kozubskaya, S.A. Soukov, "On efficiency of supercomputers in CFD simulations", Parallel Computational Fluid Dynamics 2008, Lecture Notes in Computational Science and Engineering (ISSN: 1439-7358, SCOPUS), 2011, Volume 74, Part 9, 347-354, DOI: 10.1007/978-3-642-14438-7_37
  85. A. Gorobets, F. X. Trias, M. Soria, C. D. Perez-Segarra and A. Oliva, "From extruded-2D to fully-3D geometries for DNS: a Multigrid-based extension of the Poisson solver", Parallel Computational Fluid Dynamics 2008, Lecture Notes in Computational Science and Engineering (ISSN: 1439-7358, SCOPUS), 2011, Volume 74, Part 6, 219-226, DOI: 10.1007/978-3-642-14438-7_23
  86. A.V.Gorobets, “Scalable algorithm for incompressible flow simulation on parallel computer systems”, Mathematical modeling, vol. 19, number 10, pp. 105-128, 2007
    À.Â.Ãîðîáåö, “Ìàñøòàáèðóåìûé àëãîðèòì äëÿ ìîäåëèðîâàíèÿ íåñæèìàåìûõ òå÷åíèé íà ïàðàëëåëüíûõ ñèñòåìàõ”, Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå (ISSN: 0234-0879, ÐÈÍÖ), ò. 19, ¹ ,11, (2007)
  87. I.V.Abalakin, A.V.Gorobets, T.K.Kozubskaya, “Numerical experiments on acoustic liners”, Mathematical modeling, vol. 19, number 8, pp. 15-21, 2007
    È.Â.Àáàëàêèí, À.Â.Ãîðîáåö, Ò.Ê.Êîçóáñêàÿ, “Âû÷èñëèòåëüíûå ýêñïåðèìåíòû ïî çâóêîïîãëîùàþùèì êîíñòðóêöèÿì”, Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå (ISSN: 0234-0879, ÐÈÍÖ), ò. 19, ¹ 8, (2007), ñòð. 15-21.
  88. Andrey V. Gorobets, Ilya V. Abalakin and Tatiana K. Kozubskaya, "Technology of parallelization for 2D and 3D CFD/CAA codes based on high-accuracy explicit methods on unstructured meshes", Parallel Computational Fluid Dynamics 2007, Lecture Notes in Computational Science and Engineering (ISSN: 1439-7358, SCOPUS), 2009, Volume 67, 253-260, DOI: 10.1007/978-3-540-92744-0_31
  89. F. X. Trias, A.V. Gorobets, M. Soria and A. Oliva, "DNS of Turbulent Natural Convection Flows on the MareNostrum supercomputer", Parallel Computational Fluid Dynamics 2007, Lecture Notes in Computational Science and Engineering (ISSN: 1439-7358, SCOPUS), 2009, Volume 67, 267-274, DOI: 10.1007/978-3-540-92744-0_33
  90. A.V.Gorobets, T.K.Kozubskaya, “Technology of parallelization of the explicit high-accuracy algorithms for CFD and CAA on non-structured meshes”, Mathematical modeling, vol. 19, number 2, pp. 68-86, 2007
    À.Â.Ãîðîáåö, Ò.Ê.Êîçóáñêàÿ, “Òåõíîëîãèÿ ðàñïàðàëëåëèâàíèÿ ÿâíûõ âûñîêîòî÷íûõ àëãîðèòìîâ âû÷èñëèòåëüíîé ãàçîâîé äèíàìèêè è àýðîàêóñòèêè íà íåñòðóêòóðèðîâàííûõ ñåòêàõ”, Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå (ISSN: 0234-0879, ÐÈÍÖ), ò.19, ¹ 2, (2007), ñòð. 68-86.
  91. I.V.Abalakin, A.V.Gorobets, T.K.Kozubskaya, A.K.Mironov, “Simulation of Acoustic Fields in Resonator-Type Problems Using Unstructured Meshes”, AIAA 2006-2519 Paper (2006). Collection of Technical Papers - 12th AIAA/CEAS Aeroacoustics Conference. 1520-1529
Main page  |  
(C) Web-design: Cherepock