Вихреразрешающее CFD и CAA моделирование в авиационных приложениях

Моделирование несущего винта вертолета

Моделирование несущего винта вертолета

Моделирование крыла с механизацией

Моделирование реактивной струи

 $|\nabla \rho|$: 0.4 0.6 0.8 1.1 1.5 2.1 2.9 4.1 5.7 8.0

Высокая ресурсоемкость вихреразрешающих расчетов

Прожигание СРU времени космического масштаба Расчет самолета ценою с самолет

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160009089.pdf https://commonresearchmodel.larc.nasa.gov/files/2018/01/AIAA-2017-3362.pdf https://fs.hlrs.de/projects/teraflop/26thWorkshop_talks/WSSP26-11-Kessler.pdf

http://caa.imamod.ru/ CAA lab, ИПМ им. М. В. Келдыша РАН

Недоразрешенное ColorFD Генерация очень цветных,

но очень бессмысленных картинок

• Экономичные и точные методы численные схемы, модели турбулентности, ...

• Эффективные НРС реализации масштабируемые алгоритмы, гетерогенные вычисления, ...

• Эффективные технологии проведения расчета адаптация сетки, ускорение ССР, постпроцесс, ...

Численные методы и математические модели

• Модели и подходы к моделированию турбулентности

Экономичные EBR схемы повышенной точности

Bakhvalov, P.A. & Kozubskaya, T.K. Comput. Math. and Math. Phys. (2017) 57: 680. https://www.doi.org/10.1134/S0965542517040030

Экономичные EBR схемы повышенной точности

+15% к стоимости относительно базовой схемы До 5-го порядка точности (на TC сетках)

Bakhvalov, P.A. & Kozubskaya, T.K. Comput. Math. and Math. Phys. (2017) 57: 680. https://www.doi.org/10.1134/S0965542517040030

Разрывный метод Галёркина

- Универсальный подход сотни (тысячи?) статей, рецепты на все случаи жизни и смерти
- Любой порядок аппроксимации отличная точность на гладких решениях, возможна подсеточная адаптация
- Твёрдый математический базис линейная устойчивость на любой сетке, ...
- Компактность вычислений хорошо ложится на новые архитектуры
- Высокая вычислительная стоимость:
 - для неявной схемы;
 - для криволинейных элементов;
 - расчёт на структурированной сетке по цене расчёта на неструктурированной;
- Потеря точности на разрывах точность теряется, а стоимость остаётся

Most promising framework по мнению передовых разработчиков схем

Не всегда

является лучшим средством решения конкретной задачи

- Высокая стоимость неявной схемы возможно использование приближённых методов обращения матрицы (по аналогии с R. Abgrall, <hal-01445543v2>)
- Высокая стоимость на криволинейных сетках вместе со стоимостью растёт и плотность вычислений; проблема нивелируется ростом мощностей
- Расчёт задач с разрывами решение активно ищется (см. десятки статей C.-W. Shu и M. Dumbser)

Пациент скорее жив

Альтернативы DG на неструктурированных сетках:

• Finite-Volume WENO schemes

на тестах с разрывами работает лучше DG, но еще дороже и не так надёжно. Преимущества FV WENO пытаются инкорпорировать в DG.

- Spectral Difference schemes чуть-чуть дешевле DG, но основные проблемы те же + менее надёжно.
- Рёберные схемы (EBR, FC) и Multislope MUSCL schemes дёшево, но чувствительно к качеству сетки.
 Хороший вариант, если в области интереса сетка близка к регулярной.
- Active Flux scheme

попытка избавиться от решения задачи Римана. Разработка на начальном этапе, далека от практики

 Схемы на основе непрерывного метода Галёркина метод Тейлора-Галёркина, SUPG и т. д. Преимущества перед DG неясны.

Клиника численных методов ждёт новых пациентов

Моделирование турбулентности

- Моделирование крупных вихрей LES стоимость ##### точность #######

1-100M CPUh 1E20 FLOP

100K-10M CPUh

100 – 10K CPUh

• RANS – осредненные уравнения H-C стоимость # точность ###

• RANS-LES гибридные подходы (DES) стоимость ### точность ######

Рис. 1. Энергетический спектр изотропной трехмерной турбулентности.

 Возможности RANS существенно ограничены применительно к расчету сложных турбулентных течений (особенно при отрывняке, транс- и сверхзвуковых режимах, …)

Ведутся работы по улучшению RANS для расчета пограничного слоя с неблагоприятным градиентом давления, для расчета отрывной зоны и др. C.Grabe et al. A Strategy for RANS Turbulence Model Improvement // HiFiLeD Symposium, 2018

 Оптимальный выбор по соотношению цена – точность среди вихреразрешающих расчетов: гибридные RANS-LES методы

Технологически сложная вещь.

«Слепое» применение гибридных RANS-LES методов может не привести к желаемому результату: требуется понимание физических особенностей течения, используемых моделей, возможностей численных методов, сеткопостроителей,... Возможности улучшения гибридных RANS-LES практически исчерпаны.
 Усилия направлены, в частности, на решение проблемы «серой зоны»
 Ведутся работы, например, по ускорение «численного» перехода от RANS к LES
 в слоях смешения за счет использования специальных подсеточных масштабов и/или альтернативных LES моделей

Go4Hybrid: Grey Area Mitigation for Hybrid RANS-LES Methods // Notes on Numerical Fluid Mechanics and Multidisciplinary Design 134, 2018

F.X.Trias, A.Gorobets, M.H.Silvis, R.W.C.P.Verstappen, and A.Oliva. A new subgrid characteristic length for turbulence simulations on anisotropic grids. Physics of Fluids, 29, 115109 (2017)

 Дальнейшие улучшения связаны с повышением «технологичности» вихреразрешающих алгоритмов и кодов
 P.R.Spalart & M.K.Strelets. Attached and Detached Eddy Simulation // Progress in Hybrid RANS-LES Modelling, 2018

адаптивные численные схемы, адаптивные сетки, зонные подходы, методы генерации синтетической турбулентности, ...

Суперкомпьютерный рейтинг по HPL

ЦОІ	Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
High Performance	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	200,794.9	9,783
Прямое решение СЛАУ с плотной	2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
LU разложением О(N ²) по памяти	3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
O(N ³) FLOP	4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 , NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
	5	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	27,154.3	2,384
	6	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , Cray Inc. DOE/NNSA/LANL/SNL United States	979,072	20,158.7	41,461.2	7,578
	7	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu https://v	391,680 www.top	19,880.0 500.org/	32,576.6 /lists/201	1,649 8/11/

Суперкомпьютерный рейтинг по НРСС

HPCG High Performance Conjugate Gradient

Итерационное решение СЛАУ с разреженной матрицей

Компот из CG, MG, Гаусса-Зейделя

O(N) по памяти

O(N) FLOP

Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fraction of Peak
1	DOE/SC/ORNL USA	Summit – AC922, IBM POWER9 22C 3.07GHz, dual-rail Mellanox EDR Infiniband, NVIDIA Volta V100 IBM	2,392,000	122.300	1	2.926	1.5%
2	DOE/NNSA/LLNL USA	Sierra – S922LC, Power9 180224C 3.1GHz, Mellanox EDR, NVIDIA Tesla V100 IBM / NVIDIA / Mellanox	835,584	71.610	3	1.796	1.5%
3	RIKEN Advanced Institute for Computational Science Japan	K computer – , SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10.510	16	0.603	5.3%
4	DOE/NNSA/LANL/SNL USA	Trinity – Cray XC40, Intel Xeon E5-2698 v3 300160C 2.3GHz, Aries Cray	979,072	14.137	9	0.546	1.8%
5	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint – Cray XC50, Intel Xeon E5-2690v3 12C 2.6GHz, Cray Aries, NVIDIA Tesla P100 16GB Cray	361,760	19.590	6	0.486	1.9%
6	National Supercomputing Center in Wuxi China	Sunway TaihuLight – Sunway MPP, SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93.015	2	0.481	0.4%
7	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS – PRIMERGY CX600 M1, Intel Xeon Phi Processor 7250 68C 1.4GHz, Intel Omni-Path Architecture Fujitsu	557,056	13.555	12	0.385	1.5%

http://www.hpcg-benchmark.org/

June 2018 HPCG Results

Соотношение бенчмарков с реальностью

Гибридная система

Зоопарк вычислительных устройств

(intel)

CPU: multicore, superscalar, out-of-order или WLIV, SIMD

(intel)

MIC: manycore, Intel Xeon Phi

Векторные процессоры

SoC CPU+GPU см. Mont-Blanc project

FPGA ускорители

GPU: stream processing

*картинки уперты с сайтов производителей и из прочих интернетов

http://caa.imamod.ru/ CAA lab, ИПМ им. М. В. Келдыша РАН

Ultra-manycore PEZY-SC, SunWay

Алгоритм

Переход на новый временной слой: суммирование потоков через грани в ячейки цикл по набору ячеек

решение задачи Римана о распаде разрыва

Расчет потока через грань

цикл по набору граней

Суперскалярность и out-of-order

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Организация вычислений на GPU

Volta

https://www.ixbt.com/video4/nvidia-volta.shtml

http://caa.imamod.ru/ CAA lab, ИПМ им. М. В. Келдыша РАН

Register File (65.536 x 32-bi OP Unit Lour BFU Core M Core Core Core are Core are Care C are Coro Care Care Care Care Tex Tex Tex Tex Tex Тех Te Tex Tex Tex Tex Tex Tex

Pascal

Kepler

https://devblogs.nvidia.com/inside-pascal/

Перф vs бэндвис

Разрыв между производительностью и пропускной способностью

Отношение пиковой производительности и пропускной способности памяти

- А как увеличить bandwidth?
- расширить шину
- повысить частоту
- Intel Xeon Platinum разъем FCLGA3647
- DDR4 DIMM 288 контактов

Вывод – слишком много ножек

3D микросборка – многослойные микросхемы памяти

HBM, HMC, MCDRAM, ...

Латентность не уменьшается, тайминги только растут снижает влияние латентности CPU с SMT, GPU oversubscription Intel Xeon Phi: DRAM + MCDRAM Многоканальные контроллеры на два типа памяти

- DRAM x6 DDR4 ~100 GB/s, большой объем
- MCDRAM 3D микросборка, ~400 GB/s, объем 8-16 GB
- Латентность MCDRAM выше, чем DDR4
- Режимы cache, flat, hybrid
- API memkind для выбора типа памяти в программе
- numactl для выбора типа памяти при запуске numactl –m 0 task.px берет память только с DRAM numactl –m 1 task.px берет память только с MCDRAM

Уровни параллелизма и средства разработки

Реальная и пиковая производительность

Сравнение устройств на гетерогенном CFD коде

GFLOPS									
350									
300									
250									
200									
150									
100									
50									
Intel Xeon E5-2690	Intel Xeon E5-2697v3	Intel Xeon 8160	Intel Xeon Phi 7110X	Intel Xeon Phi 7290	NVIDIA Tesla	NVIDIA Tesla	NVIDIA Tesla	AMD FirePro	AMD Radeon R9
8 cores 51GB/s 0.2TF	14 cores 68 GB/s 0.29TF	24 cores 120 GB/s 1.6TF	61 cores 352GB/s 1.2TF	72 cores 400GB/s 3.4TF	2090 178 GB/s 0.67TF	K40 288GB/s 1.5TF	V100 900GB/s 7TF	9150 320 GB/s 2.5TF	Nano 512 GB/s 0.5 TF

Сетка 445 тыс. ячеек. 1 шаг по времени 5 мс на AMD Nano AI ~2 FLOP/byte, ~2.5 KFLOP на ячейку, ~1.1KB на ячейку

Многоуровневое распараллеливание

Распараллеливание с распределенной памятью DM-MIMD Domain decomposition

Многоуровневое распараллеливание

Распараллеливание с общей памятью SM-MIMD Domain decomposition

Многоуровневое распараллеливание

SIMD

Векторизация

Потоковая обработка

Многоуровневая декомпозиция

Overlap: сокрытие обменов за вычислениями

Вычисления и обмен данными

Многоуровневая декомпозиция

Многоуровневая декомпозиция

Гетерогенные вычисления

$$t_{sync} = t_{HD} + t_{MPI} + max(N^{d_k})C_D$$

$$t_{HD} = T_{HD}(max(N_I^{d_k}) + max(N_H^{d_k}))$$

$$t_{MPI} = T_{MPI}(N_I + N_H)$$

Разделим вычисления на два этапа:

- внутренние ячейки (KN1)
- интерфейсные ячейки (KN2)

A.Gorobets, S.Soukov, P.Bogdanov. Multilevel parallelization for simulating turbulent flows on most kinds of hybrid supercomputers. Computers and Fluids. Volume 173, Pages 171-177. 2018. https://doi.org/10.1016/j.compfluid.2018.03.011

Ломоносов-2 (МГУ): 14C Xeon E5-2697v3 NVIDIA K40, IB FDR

HPC5 (Курчатовский институт): 2x 8C Xeon E5-2650v2, 2x NVIDIA K80, IB FDR

MPI+OpenMP+OpenCL Ломоносов-2: 14с Xeon E5 v3 + K40M

A.Gorobets, S.Soukov, P.Bogdanov. Multilevel parallelization for simulating turbulent flows on most kinds of hybrid supercomputers. Computers&Fluids. (2018) 173:171. https://doi.org/10.1016/j.compfluid.2018.03.011

- МРІ на первом уровне
- OpenMP реализация для многоядерных процессоров и ускорителей
- OpenCL реализация для потоковых ускорителей
- Двухуровневая декомпозиция с балансировкой загрузки по фактической производительности
- Overlap режим сокрытие обменов за вычислениями

- Оптимизация параметров методов и моделей
- Адаптивные сетки
- Экономия на неявной схеме интегрирования по времени приближенный якобиан по схеме 1 порядка
- Ускорение выхода на статистически стационарный режим (ССР)

• Уменьшение исследуемой области

периодические граничные условия моделирование фрагментов сложных объектов генератор синтетической турбулентности

- Выбор шага по времени маленький шаг – дорого, большой шаг – неточно, неустойчиво.
- Настройки гибридной схемы CD+UW
 локальный подбор весов между центрально-разностной и противопоточной частями
- Настройки неявной схемы выбор невязки ньютоновского процесса точность решателя СЛАУ, выбор и настройка предобуславливателя
- Динамическая конфигурация метода автовыбор шага, невязки солвера, веса центральной разности автоконтроль корректности, диагностика, откаты с коррекцией без авоста
- Смешанная точность поля на FP64, геометрия, солвер СЛАУ на FP32

- Технология построения сетки оптимальное распределение пространственного разрешения
- Динамическая адаптация без изменения топологии улучшение пространственного распределения сокращение времени на установлении ССР

- Использование последовательности равномерно сгущающихся сеток
 1 шаг сгущения в 8 раз больше узлов.
 протяжка RANS, расчет DES, интерполяция решения на подробную сетку
- Подвижные границы и динамическая адаптация для моделирования нескольких вариантов за один расчет
- Определение момента выхода на ССР

Пространственное осреднение для повышения качества статистики

• Все пространственные симметрии должны использоваться для повышения качества статистики течения

Уменьшение исследуемой области

• Периодические граничные условия

• Моделирование фрагментов сложного объекта использование синтетики для воспроизведения турбулентного контента

 Выделение зоны высокого разрешения в составе сложного объекта весь объект – RANS разрешение выбранная подобласть интереса – DES разрешение

Моделирование несущего винта вертолета

- "Протяжка" разгонного вихря в RANS режиме
- Периодика по углу на режиме висения
- Пристеночные функции в погранслое

Параметры расчета

- вычислительный домен: 90°
- с учетом боковых блоков
- сетка: 63.4 млн.
- расчет: 1920 ядер CPU
 (80 MPI x 12 OpenMP x HT)
- Периодика по углу
- ІВС для боковых блоков
- Синтетика на входе

САА расчет стреловидного крыла авиалайнера

Модель крыла с механизацией 30Р30N, AOA 5.5°

- Периодика по размаху
- FW/H для шума в дальнем поле

Pascioni, Kyle & Cattafesta, Louis. (2016). Aeroacoustic Measurements of Leading-Edge Slat Noise. 22nd AIAA/CEAS Aeroacoustics Conference. DOI: 10.2514/6.2016-2960

Сравнение с экспериментом

Сравнение результатов

Огрубление сетки: 34М (X1), 18М (X2), 9М (X4) узлов

Уменьшение интервала осреднения

Струя из двухконтурного сопла ТРДД

Струя из двухконтурного сопла ТРДД

Main flow regime - Npr1= 1.72, Npr2= 2.25

Exposure equal 0.01 sec

Визуализация ИТПМ

Расчет (код NOISEtte, ИПМ РАН)

Выводы

Прогресс в развитии

- 1) численных методов и моделей;
- 2) вычислительной техники и НРС технологий;
- 3) повышение технологичности использования

численных методов и моделей,

вычислительных систем и программных комплексов

когда-нибудь приведет к светлому будущему вихреразрешающего моделирования в промышленной практике

Работы по приближению этого светлого будущего, особенно в части эффективного использования современных гибридных суперкомпьютеров, были поддержаны Российским научным фондом Проект 19-11-00299

"Сверхмасштабируемые параллельные алгоритмы и гетерогенные вычисления для вихреразрешающего моделирования задач гидродинамики, аэродинамики и аэроакустики"

Внеклассное чтение

A.Gorobets, S.Soukov, P.Bogdanov. Multilevel parallelization for simulating turbulent flows on most kinds of hybrid supercomputers. Computers and Fluids. Volume 173, Pages 171-177. 2018. https://doi.org/10.1016/j.compfluid.2018.03.011

A.Gorobets. Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations. Lobachevskii Journal of Mathematics. 2018, Vol. 39, No. 4, pp. 524–532. https://doi.org/10.1134/S1995080218040078

S. A. Soukov, A. V. Gorobets. Heterogeneous Computing in Resource-Intensive CFD Simulations. Doklady Mathematics, 2018, Vol. 98, No. 2, pp. 1–3. DOI: 10.1134/S1064562418060194

Gorobets A.V. Parallel technologies for solving CFD problems using high-accuracy algorithms, Comput. math and math physics, 2015, Volume 55, Issue 4, pp 638–649. https://doi.org/10.1134/S0965542515040065

Горобец А. В. Методика выполнения крупномасштабных расчетов задач газовой динамики, Математическое моделирование, 2016, том 28, номер 4, стр. 77-91.

P.A. Bakhvalov, I.V. Abalakin, T.K. Kozubskaya, Edge-based reconstruction schemes for unstructured tetrahedral meshes, Int. J. Numer. Methods Fluids. 81(6) (2016) 331–356. http://doi.org/10.1002/fld.4187

P.A. Bakhvalov, T.K. Kozubskaya, Reprint of: EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes, Comput. Fluids 169 (2018) 98-110. http://doi.org/10.1016/j.compfluid.2018.03.050

F.X.Trias, A.Gorobets, M.H.Silvis, R.W.C.P.Verstappen, and A.Oliva. A new subgrid characteristic length for turbulence simulations on anisotropic grids. Physics of Fluids, 29, 115109 (2017)