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Abstract
The thesis is mainly focused on high-performance computing algorithms in compu-

tational fluid dynamics (CFD). The purpose of this work is to contribute to the devel-
opment of numerical algorithms and parallelization methods for the Direct Numerical
Simulation (DNS) of incompressible flows on wide range of parallel systems from
loosely coupled clusters to supercomputers. Nowadays DNS is becoming more and
more important area of CFD with the rapid growth of the computing power of mod-
ern computer systems. Supercomputers are approaching fast the Petaflop boarder.
The number of CPU cores in a supercomputer becoming of 105 scale. In this condi-
tions efficient scalable parallel algorithms are of the first priority. Meanwhile low-cost
loosely coupled clusters are still widely used due to their high performance/cost ra-
tion. Hence flexible algorithms that can be efficiently used on both supercomputers
and small clusters are of high importance. Development and implementation of such
algorithms are within the primary subjects of the thesis. DNS of the turbulent flows
which requires huge computing power is one of the main fields of application of the
developed algorithms. This class of CFD simulations provides not only new insights
into the physics of turbulence but also provides a calibration basis for the future pro-
gresses on turbulence modelling. High resolution DNS of complex 3D turbulent flows
with two and three wall-bounded directions are of high importance for verification of
numerous turbulent models. Application of the developed algorithms for large DNS
of such complex flows is also a substantial part of the thesis1.

In the first chapter, a scalable parallel Poisson solver, named Krylov-Schur-Fourier
Decomposition (KSFD), is presented. It is based on fast Fourier decomposition
method (FFT) with Krylov method of conjugate gradients (CG) preconditioned with
the Direct Schur Decomposition (DSD) algorithm [1, 2]. FFT provides uncoupling of
3D problem in one direction leading to the set of independent 2D problems, each of
them is further solved with CG and DSD method. Numerical experiments showing
the scalability and the flexibility of the method on both the MareNostrum supercom-
puter and a PC cluster with a conventional 100 Mbits/s network are presented and
discussed.

In chapter 2, the set of large DNS of a differentially heated cavity is presented.
The biggest case of the set for Rayleigh number Ra = 1011 was solved with 4-th order
scheme on a mesh of 1.1 × 108 nodes using up to 1024 CPU of the Marenostrum

1This work consists of several chapters which content is based on the papers (that have been
published or currently under revision in international journals) and proceedings of international
conferences. Hence, all these chapters are written to be self-contained and only minor changes have
been introduced with respect the originals. As a consequence, some contents such those describing
the governing equations, the numerical algorithms or the description of test cases are repeated.

9



10 Abstract

supercomputer of Barcelona supercomputing center. The set of DNS presented in
this chapter covers configurations with high Rayleigh numbers 1010, 3×1010 and 1011,
Pr = 0.71). Together with previous results [3] [4] it gives a relatively wide range
of Ra-numbers from weak to fully developed turbulence. The main features of the
flow, including the time-averaged flow structure, the turbulent statistics, the global
kinetic energy balances and the internal waves motion phenomenon are described and
discussed.

In the chapter 3, a way to extend the KSFD solver to fully 3D geometries is
proposed. The use of FFT decomposition implies some limitations on geometry such
as uniform mesh step on the FFT direction. For this reason KSFD solver is only
applicable to so-called extruded geometries - 3D problems derived from 2D geometry
by extrusion with uniform mesh step. This chapter is devoted to extend the previous
algorithm to eliminate these limitations. The ”fully-3D” algorithm presented is based
on combination a two-level multigrid (MG) and the KSFD method as solver for second
level. This way fully-3D geometry is approximated by geometry suitable for KSFD
solver. A typical fully-3D DNS problem of high importance, a surface mounted cube
in a channel flow, is considered as an example of solver application. Illustrative
performance results presented.
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Chapter 1

Krylov-Schur-Fourier
Decomposition algorithm for
high-order Poisson equation

Main contents of this chapter have been published in:

A. Gorobets, F. X. Trias, M. Soria and A. Oliva, A scalable Krylov-Schur-Fourier De-
composition for the efficient solution of high-order Poisson equation on parallel systems from
small clusters to supercomputers, Computers and Fluids, (submitted).

A. Gorobets, Scalable algorithm for incompressible flow simulation on parallel computer
systems, Mathematical modelling, vol. 19, #10, 105-128, 2007.

Abstract.

A parallel algorithm for direct numerical simulation (DNS) of incompressible turbulent

flows that provides a fairly good scalability for a wide range of parallel computer architectures

has been developed. Since the time integration is fully explicit, from a parallel point of

view, the main bottleneck is the Poisson equation. In the previous works a Direct Schur-

Fourier Decomposition (DSFD) algorithm [5, 2] conceived for low-cost PC clusters with poor

network performance, was proposed. Such method, that is very efficient for PC clusters,

can not be used with relatively large number of processors and mesh sizes, mainly due

to the RAM memory requirements [2]. The new scalable parallel Poisson solver, named

Krylov-Schur-Fourier Decomposition (KSFD), is presented in this chapter. It is based on

fast Fourier decomposition method (FFT) with Krylov method of conjugate gradients (CG)

preconditioned with the Direct Schur Decomposition (DSD) algorithm [1, 2]. FFT provides

uncoupling of the original 3D problem into a set of independent 2D problems, then each of

them is solved using CG preconditioned with DSD method. Numerical experiments showing

the scalability and the flexibility of the method on both the MareNostrum supercomputer

and a PC cluster with a conventional 100 Mbits/s network are presented and discussed.
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Chapter 1. Krylov-Schur-Fourier Decomposition algorithm for high-order Poisson

equation

1.1 Introduction

Many important applications in the computational fluid dynamics (CFD) field, such
as direct numerical simulation (DNS) or large-eddy simulation (LES) of transition
and turbulent flows demand huge computing power and need parallel computers to
be feasible. The Poisson equation, which arises from the incompressibility constraint
and has to be solved at least once at each time step, is usually the main bottleneck
from a parallel point of view. In this context, efficient and scalable algorithms for
the solution of the Poisson equation on a wide range of parallel systems are of high
interest.

Structured Carthesian discretization in a rectangular domain is considered. The
Poisson equation is to be solved at least once on each time step even using explicit
algorithms and this equation is the main bottleneck for the parallel simulations of the
turbulent incompressible flows. The poisson operator has infinite speed of propagation
of information in the spatial domain. This tight coupling of computational domain
is a serious obstacles for the parallelization. For this reason efficient solution of the
Poisson equation on parallel systems is of first priority.

Roughly speaking, contemporary parallel systems vary from cheap small loosely-
coupled PC clusters made of standard office computer equipment and conventional
networks to huge supercomputers with thousands of tightly coupled CPUs. First
group has very good CPU-performance/cost ratio but, in general, the total number
of CPUs is relatively small and the network performance is relatively poor (high
latency and low bandwidth). Therefore, on such systems the size and number of
the messages exchanged must be minimized in order to increase the efficiency of the
algorithms. In contrast, in supercomputers the number of CPUs is much bigger and
network performance much better (specially in terms of latency). It is important
to note that depending on the computer architecture, the number of processors and
the scale of the problem being solved, these considerations may become even more
important than the arithmetical complexity of the algorithm [2].

Therefore, for the aforementioned reasons, algorithms that work well on super-
computers may not work efficiently on PC clusters due to the poor network per-
formance. For instance, Krylov-subspace methods demand several communication
episodes (for matrix-vector products, scalar products and pre-conditioning) that can
lead to poor efficiency on loosely coupled parallel systems. And vice-versa, algorithms
that are designed to work well on PC clusters, such as Schur complement-based meth-
ods [5, 2, 1, 6, 7, 8], can suffer strong limitations of scalability to bigger number of
CPUs [2].

Another example, the Multigrid method which is one of the most powerful methods
for sequential computations requires a lot of communication episodes when iterating
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on coarser levels. It is rather difficult (if possible) to apply multigrid efficiently to
solve Poisson equation on parallel systems with rather big CPU number or with high-
latency network. Some implementations of multigrid has better scalability but it is
still far from hundreds and thousands of CPU. Details about the problems of parallel
multigrid solver implementations can be found in [9].

FFT methods [10]applied for more that one direction can provide very low com-
putational cost O(N log N) but it also have specific limitations, in particular, FFT
requires uniform mesh step. Chebyshev based methods [11] allow to use non-uniform
mesh step but it also requires specific mesh step distribution. Placing obstacles in a
flow it is another problem because presence of obstacle must not affect the Poisson
matrix otherwise these methods cannot be applied.

For a more detailed review of the existing parallel solvers and their scalability
limitations the reader is referred to [5, 2].

Moreover, most of the existing parallel Poisson solvers do not properly combine
the flexibility required for the wide variety of parallel systems and CFD applications
to be run on.

This chapter is focused on the development of a parallel Poisson solver scalable
and flexible enough to run efficiently on both PC clusters and supercomputers. In the
context of DNS and LES time-accurate incompressible flow simulations, the scalability
of the solver is of high importance as it allows to deal with large size problem (like
hundreds of millions of unknowns and more) and exploit efficiently the computing
power of moderns supercomputers.

Furthermore, the following four aspects, which are also relevant in the context of
this paper, are commonly present in these applications:

• The Poisson equation has to be solved repeatedly1, with different right-hand
side terms, while the system matrix remains constant. Hence, a pre-processing
stage with large computing demands can be accepted.

• Wall-bounded flows or/and flows around internal obstacles are common in most
of the applications [12, 13, 4, 3, 14]. Therefore, in order to solve all relevant tur-
bulent scales near the walls arbitrary non-uniform discretizations are required.

• The solution obtained in the previous time step(s) can be used as an initial
guess for iterative solvers in order to accelerate the convergence. This becomes
specially relevant if an explicit time advancement method is being used.

• Periodicity in at least one direction is usually of interest for many LES and DNS
applications.

1The number of time-steps required to solve our benchmark problems from initial conditions is
∝ 106.
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The last property makes the Fourier diagonalization [15] in the periodic direc-
tion(s) the best choice. The uniformity of the grid in each such direction imposed
by the method is suitable with the isotropic nature of the flow in the periodic direc-
tion(s). Fourier diagonalization allows to decompose the original three-dimensional
(3D) Poisson equation into a family of independent two-dimensional (2D) systems of
equations.

The previous work was oriented on low-cost PC clusters with poor network per-
formance. In that context, the Schur complement method was a good choice for the
parallel solution of this set of 2D problems because systems arising from non-uniform
meshes can be solved without increasing the computational costs. Moreover, the
Schur complement matrix only needs to be computed in a pre-processing stage and
it allows to solve all the planes to machine accuracy using only one all-to-all com-
munication episode [1]. Furthermore, since the parallelisation of FFT is not efficient
on loosely coupled parallel computers parallelisation in the periodic direction was
discarded. Such parallel Poisson solver, named Direct Schur-Fourier Decomposition
(DSFD) algorithm [5, 2], have been successfully used to perform DNS simulations [4, 3]
of turbulent natural convection flows in enclosed cavities.

1.1.1 Motivation and summary of the present work

However, the DSFD algorithm, that is very efficient on PC clusters, can not be used
for an arbitrarily large number of processors and problem size, mainly due to the
RAM memory requirements [2] and the size of communications that grow fast with
the number of processors and mesh size. These problems limit the DSFD solver
scalability specially for high-order numerical schemes making it not applicable for
large-scale problems on supercomputers using hundreds (or thousands) of processors.

To do so, a new version of the solver, named Krylov-Schur-Fourier Decomposition
(KSFD), is presented. Again, a Fourier decomposition is used to uncouple the original
3D Poisson equation into a set of 2D planes. Then, each 2D problem in solved
using a Conjugated Gradient (CG) method [16] preconditioned by a Direct Schur
Decomposition (DSD) algorithm [1]. To do that, each plane is decomposed into
blocks and each of them in solved with the DSD or a local solver depending on size.

Therefore, one of the main features of the algorithm is its flexibility: the number
of blocks governs the convergence properties of the algorithm. The smaller is the
number of blocks, the CG algorithm is better preconditioned and consequently the
number of iterations reduced. However, bigger blocks implies more RAM memory
and computational costs. Hence, the block size of each plane is chosen in order to
minimize the global computational cost accomplishing with the memory limitations
and communication time imposed by our computer architecture.
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Convergence properties of the 2D problems are considered from both analytical
and numerical point of views. Based on these results, a flexible solver model governed
by the number of blocks (solved using a direct DSD method or a local LU method
depending on a block size) is proposed and tested. In addition, the problem of the
choice of the residual criteria and the initial guess are also discussed and analyzed.

The numerical tests presented in this paper have been carried out on a PC cluster
with 40 standard PCs running Linux and a conventional 100 Mbits/s Ethernet net-
work and on the IBM MareNostrum supercomputer at the Barcelona Supercomputing
Center. Performance tests for meshes of up to ≈ 111 × 106 nodes using up to 1024
processors illustrating the robustness and scalability of the method are presented and
discussed.

The rest of the chapter is organized as follows. In section 1.2, the numerical meth-
ods for space and time discretization are briefly exposed. The KSFD algorithm is
described in section 1.3. In section 1.4, a scalable solver model for KSFD is intro-
duced and tested for a real application on the PC cluster and on the MareNostrum
supercomputer. Finally, conclusions are given in section 1.5.

1.2 Overview of the mathematical model

1.2.1 Governing equations

The non-dimensional incompressible Navier-Stokes (NS) equations coupled with the
thermal transport equation in a bounded parallelepipedic domain of height Lz, width
Ly and depth Lx are considered

∇ · u = 0 (1.1)
∂u
∂t

+ (u ·∇)u = Pr∇2u−∇p + f (1.2)

∂T

∂t
+ (u ·∇)T = ∇2T (1.3)

where Pr is the Prandtl number and f is an externally applied body force (e.g.
gravity). Periodic boundary conditions are prescribed in the x-direction,

u (x, t) = u (x + Lxex, t) (1.4)
T (x, t) = T (x + Lxex, t) (1.5)

because it allows to study the 3D effects due to intrinsic instability of the main flow
and not due to the boundary conditions [4, 3].
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1.2.2 Time-integration method

In order to simplify the notation, momentum equation (1.2) can be rewritten as

∂u
∂t

= R (u)−∇p

where R(u) represents the right-hand-side terms of the momentum equation except
for the pressure gradient,

R(u) ≡ Pr∇2u− (u ·∇)u + f (1.6)

For the temporal discretization, a central difference scheme is used for the time
derivative term, a fully explicit second-order one-leg scheme [12] for R(u) and a
first-order backward Euler scheme for the pressure-gradient term. Incompressibility
constraint is treated implicit. Thus, we obtain the semi-discretized NS equations

∇ · un+1 = 0 (1.7)

(β + 1/2)un+1 − 2βun + (β − 1/2)un−1

∆t
=

R
(
(1 + β)un − βun−1

)−∇pn+1 (1.8)

where the parameter β is computed each time-step to adapt the linear stability domain
of the time-integration scheme to the instantaneous flow conditions in order to use
the maximum ∆t possible. For further details about the time-integration method the
reader is referred to [3].

To solve the velocity-pressure coupling a classical fractional step projection method [17,
18] is used. In the projection methods, solutions of the unsteady NS equations are ob-
tained by first time-advancing the velocity field u without regard for its solenoidality
constraint (1.7), then recovering the proper solenoidal velocity field, un+1 (∇ ·un+1 =
0). This projection is derived from the Helmholtz-Hodge vector decomposition the-
orem [19], whereby the velocity un+1 can be uniquely decomposed into a solenoidal
vector, up, and a curl-free vector, expressed as the gradient of a scalar field, ∇p̃. This
decomposition is written as

up = un+1 + ∇p̃ (1.9)

where the predictor velocity up is
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up =
2βun − (β − 1/2)un−1

β + 1/2
+

∆t

β + 1/2
R

(
(1 + β)un − βun−1

)
(1.10)

and the pseudo-pressure is p̃ = ∆t/ (β + 1/2) pn+1. Taking the divergence of (1.9)
yields a Poisson equation for p̃

∇ · up = ∇ · un+1 + ∇ · (∇p̃) −→ ∇2p̃ = ∇ · up (1.11)

The question of what boundary condition to use for the pressure equation (1.11) in
the non-periodic directions has led to much discussion. The main ideas were shortly
reviewed in [20]. The use of the normal component of the momentum equation is
commonly accepted as the most appropriate boundary condition, see for example [21].
However, at the discrete level on staggered grids with prescribed velocity boundary
conditions, as in our case, the incompressibility condition occurs naturally and no
specific boundary condition for the pressure needs to be specified as pointed out
in [22].

Finally, once the solution is obtained, un+1 results from the correction

un+1 = up −∇p̃ (1.12)

Therefore, the algorithm for the integration of each time-step is

1. Evaluate R
(
(1 + β)un − βun−1

)
.

2. Evaluate the predictor velocity up from Eq.(1.10).

3. Evaluate ∇ · up and solve the discrete Poisson (2.12) equation.

4. Obtain the new velocity field with Eq.(1.12).

It is well-known that due to stability reasons explicit temporal schemes introduce
severe restrictions on the time-step, while implicit discretization would improve the
overall stability. However, for the use of implicit methods in DNS of turbulent flows
the computational costs are rather high compared to those of explicit methods. This
is because of the underlying restrictions to time-step that are required to fully resolve
all temporal scales in the NS equations. Therefore, we have only considered explicit
methods in the view of the lower costs.
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1.2.3 Spatial discretization

Governing equations (1.1-1.3) are discretized on a staggered grid in space by second- or
fourth-order symmetry-preserving discretizations [12]. Following the same notation,
the symmetry-preserving discretization of the Navier-Stokes equations becomes

Muh = 0 (1.13)

Ω
duh

dt
= −C (uh)uh + Duh + fh −Mtph (1.14)

where uh stands for the discrete velocity vector, Ω is a positive-definite diagonal
matrix representing the sizes of the control volumes, the convective coefficient matrix
C (uh) is skew-symmetric, the discrete diffusive operator D is a symmetric negative-
definite matrix and M is the discrete divergence operator. The discrete gradient
operator is the transpose of the discrete divergence multiplied by a diagonal scaling
G = −Ω−1Mt.

The main feature of such discretization is that it preserves the underlying symme-
try properties of the continuous differential operators. These global discrete operator
properties ensure both stability and that the global kinetic-energy balance is exactly
satisfied even for coarse meshes if incompressibility constraint is accomplished [12].
Energy transport equation is also discretized using a symmetry-preserving discretiza-
tion.

It must be noted that periodic boundary conditions are prescribed in the x-
direction because it allows to study the 3D effects due to intrinsic instability of the
main flow and not due to the boundary conditions [4, 3]. This case is also more
convenient from a computational point of view because the resulting flows are free
from boundary layers on the x-direction and therefore, the mesh can be coarser and
uniform in this direction. This allows to apply Fourier-based methods to solve the
Poisson equation. See section 1.3.1 for further details.

1.2.4 Discretization of the Poisson equation

Let us briefly outline those aspects concerning the discretization of the Poisson equa-
tion (2.12) that are relevant in our context. The discrete Laplacian operator of the
Poisson equation can be viewed as the product of the discrete divergence operator
M by the discrete gradient operator, which is the transpose of the discrete diver-
gence multiplied by a diagonal scaling G = −Ω−1Mt. So, the Laplacian operator is
approximated by the matrix product

L = −MΩ−1Mt (1.15)
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Therefore the discrete Poisson equation to be solved at each time-step is of the
form

Lph = Mup
h (1.16)

where the discrete laplacian operator, L, is represented by a symmetric negative
semidefinite matrix (1.15). Thus, with the given Poisson equation discretization and
boundary conditions the problem under consideration is of the form 2

A3Dx3D = b3D (1.17)

where A3D ∈ RN×N is a singular symmetric positive semidefinite matrix given by

A3D = −L (1.18)

and N = Nx × Ny × Nz is the total number of nodes. For convenience, the sign of
the system has been changed to make the matrix A3D positive (semi-)definite.

Vectors x3D ∈ RN and b ∈ RN can be divided into Nyz = Ny × Nz sub-vectors
with Nx components each,

x3D ≡ (
x1,1,x2,1, · · · ,xj,k, · · · ,xNyNz

)t (1.19)

b3D ≡ (
b1,1,b2,1, · · · ,bj,k, · · · ,bNyNz

)t (1.20)

where xj,k = (x1,j,k,x2,j,k, · · · ,xNx,j,k)t ∈ RNx . With this partition and considering
a column- or rowwise ordering of grid points (lexicographical ordering) the resulting
matrix A3D is a block diagonal matrix with a regular sparsity pattern,




Ap
1,1A

n1
1,1A

n2
1,1 · · · At1

1,1A
t2
1,1 · · ·

As1
2,1A

p
2,1A

n1
2,1A

n2
2,1 · · · At1

2,1A
t2
2,1 · · ·

. . .
. . .

· · · Ab2
j,k Ab1

j,k · · · As2
j,k As1

j,k Ap
j,k An1

j,k An2
j,k · · · At1

j,k At2
j,k · · ·

. . .
. . .

· · · Ab2
Ny,Nz

Ab1
Ny,Nz

· · ·As2
Ny,Nz

As1
Ny,Nz

Ap
Ny,Nz




2The superindex 3D is used to express that each unknown is coupled with the neighbouring
unknowns in the three spatial directions.
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where Anr

j,k, Asr

j,k, Atr

j,k and Abr

j,k are Nx ×Nx diagonal matrices

Anr

j,k = anr

j,kI ∈ RNx×Nx (1.21)

and Ap
j,k are Nx × Nx symmetric real-valued circulant [23] matrices. For further

details about the discretization of the Poisson equation the reader is referred to [5, 2].

1.3 Krylov-Schur-Fourier Decomposition algorithm

1.3.1 Fourier Decomposition

Diagonalization problem of generic symmetric real-valued circulant matrices and their
correspondence with the discrete Fourier transforms (DFT) was considered in detail
in our previous work [2]. Following the same notation we define QR ∈ RNx×Nx as an
inverse Fourier transform matrix for real-valued problems

z = QRẑ (1.22)

and consequently Q−1
R as the forward DFT matrix.

Furthermore, Ap
j,k are symmetric real-valued circulant [23] matrices of the form3

Ap
j,k ≡




ap
j,k ae1

j,k ae2
j,k . . . ae1

j,k

ae1
j,k ap

j,k ae1
j,k . . . ae2

j,k

ae2
j,k ae1

j,k ap
j,k . . . ae3

j,k
...

...
...

. . .
...

ae1
j,k ae2

j,k ae3
j,k . . . ap

j,k



∈ RNx×Nx (1.23)

therefore, they can be diagonalized by means of a DFT algorithm,

Q−1
R Ap

j,kQR = Λj,k (1.24)

where Λj,k ∈ RNx×Nx is a diagonal matrix with the eigenvalues of Ap
j,k given by

(λi)j,k = ap
j,k + 2

Nx/2−1∑
r=1

aer

j,kcos (rαi) (1.25)

where αi = [2π (i− 1)] /Nx (for further details the reader is referred to [2]).

This allows to decompose the original block diagonal system (1.17) into a set
of Nx block diagonal equations. To do so, each of the block diagonal equations

3The number of non-zero coefficients aer
j,k depends on the stencil size of the numerical scheme.

However, we have adopted this notation to keep the method as general as possible.
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is pre-multiplied by Q−1
R and the sub-vectors xj,k are expressed as QRx̂j,k. After

these operations, the Ap
j,k matrices become diagonal while the Anb

j,k matrices, that
are equal to the identity matrix multiplied by a scalar (1.21), are not affected (e.g.
Q−1
R an

j,kIQR = an
j,kI).

y

z
x

1

Nx

2D stencil after X coupling is removed

Fourier

Plane Nx

Plane 1

3D domain Set of 2D planes
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Full 3D Scheme stencil

Figure 1.1: Domain uncoupling on x-direction (periodic) by means of Fourier

decomposition.

In conclusion, the Fourier diagonalization eliminates all the non-diagonal entries
of matrices Ap

j,k (see figure 1.1). Thus, the original system (1.17) is now decoupled
into a set of Nx systems where the unknowns x̂i,j,k are only coupled with unknowns
in the same plane i,

Â2D
i x̂2D

i = b̂2D
i , i = 1, · · · , Nx (1.26)

where Â2D
i ∈ RNyz×Nyz is a block diagonal matrix associated with the transformed

equation for plane i. Further details of the method can be found in [5, 2]. In summary,
the operations to be performed to solve the original system are
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1. Calculate the Nx transformed right-hand-side sub-vectors,

b̂j,k = Q−1
R bj,k.

2. Solve the Nx decoupled block diagonal equations systems Âix̂i = b̂i.

3. Carry out the anti-transformation of the Nx solution sub-vectors xj,k = QRx̂j,k

Matrix-vector product requires O (
N2

)
operations, so for both the inverse and for-

ward DFT (steps 1 and 3), the cost would be O (
N2

xNyNz

)
. However, in our case they

can be carried out using a FFT algorithm that is only O (Nx (log2Nx)) (see [24], for
instance). Therefore, their cost grows only with O (Nx (log2Nx)NyNz) and it is small
compared with the solution of the Nx decoupled linear systems. Moreover, note that
the optimised FFT for real-valued problems outlined in our previous work [2] allows
us to half the computational cost compared with the straightforward implementation.

Therefore, once the FFT algorithm has been applied, we must focus on the efficient
solution of the set of decoupled block diagonal systems (1.26). This will be addressed
in the following sections.

1.3.2 Overview of the Direct Schur Decomposition (DSD) al-
gorithm

In this section the Direct Schur Decomposition [1] (DSD) algorithm is briefly de-
scribed. This parallel method, that allows to solve each bidimensional decoupled
problem (1.26) to almost machine accuracy, is based on the fact that the matrix of
the coefficients remains constant during all the fluid flow simulation. This allows
us to evaluate and store the inverse of the interface matrix of each equation in a
pre-processing stage. The combination of the Fourier diagonalization, outlined in the
previous section, and the DSD algorithm as a direct solver for each plane was named
Direct Schur-Fourier Decomposition (DSFD) algorithm [5, 2]. Then, in the solution
stage all the systems are solved together. Thus, only one all-to-all communication
episode is needed to solve each 3D Poisson equation (1.17) to machine accuracy. This
method allowed us to perform DNS simulations of buoyancy driven flows on a low-cost
PC cluster [4, 3]. For further details about the DSFD algorithm the reader is referred
to our previous works [5, 2, 1].

Since all the planes are fully decoupled after the Fourier decomposition, in this
section only the solution of one arbitrary 2D problem is considered. To simplify the
notation, the hats and sub-indices are dropped and each Nx block diagonal equations
(1.26) to be solved is simply denoted as

Ax = b (1.27)
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where A ∈ RNyz×Nyz and x,b ∈ RNyz .

The unknowns of vector x are partitioned into a family of P subsets, called inner
domains, that are labelled from 0 to P −1, plus one interface (see figure 1.2), labelled
s. Inner nodes are those that are not directly coupled with other inner subsets.

Interface nodes I
Interface size

Scheme stencil

Inner nodes

P=1 P=2

P= 4P=3 P=5

P=0

Figure 1.2: Partition and reordering of the unknowns for the fourth-order discrete

Poisson equation.

Therefore, all the nodes are divided into P + 1 subsets and renumbered according
to the partition chosen. Thus, with this partition the system (1.27) can be expressed
using block matrices as follows




A0,0 0 · · · 0 A0,s

0 A1,1 · · · 0 A1,s

...
...

. . .
...

...
0 0 · · · AP−1,P−1 AP−1,s

As,0 As,1 · · · As,P−1 As,s







x0

x1

...
xP−1

xs




=




b0

b1

...
bP−1

bs




(1.28)

The interface unknowns are isolated by means of block Gaussian elimination. Then,
system (1.28) results
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A0,0 0 · · · 0 A0,s

0 A1,1 · · · 0 A1,s

...
...

. . .
...

...
0 0 · · · AP−1,P−1 AP−1,s

0 0 · · · 0 Ãs,s







x0

x1

...
xP−1

xs




=




b0

b1

...
bP−1

b̃s




(1.29)

The last block equation, involving only unknowns in xs ∈ RNs , is the interface equa-
tion

Ãs,sxs = b̃s (1.30)

with the modified right-hand side

b̃s = bs −
P−1∑
p=0

As,pA−1
p,pbp (1.31)

and the Schur complement matrix given by

Ãs,s = As,s −
P−1∑
p=0

As,pA−1
p,pAp,s (1.32)

Hence, interface equation (1.30) is solved before the inner domain equations. Once
xs is known, each of the xp can be obtained independently by its owner p, solving its
original equation

Ap,pxp = bp −Ap,sxs (1.33)

Finally, note that Ãs,s ∈ RNs×Ns is a dense matrix. Both Ãs,s and b̃s can be
evaluated without the explicit calculation of A−1

p,p, as described in [1].

The solution of the interface equation (1.30) is critical for the efficiency of the
Schur decomposition algorithm. For this reason the inverse of the matrix Ã−1

s,s is
obtained at the preprocessing stage to solve the equation explicitly:

xs = Ã−1
s,sb̃s (1.34)

A parallel block LU decomposition of dense matrices, based on the distributed eval-
uation and storage of the inverse of the Schur complement matrix, is used (see refer-
ences [5, 2, 1] for details). In summary, the DSD algorithm for the direct solution of
Eq.(1.27) is as follows:
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1. Solve Ap,pt = bp

2. Evaluate the local contribution to the r.h.s. of the interface equations, b̃p
s =

As,pt

3. Carry out the global summation t =
∑P−1

p=0 b̃p
s

4. Evaluate the r.h.s. of the interface equations, b̃s = bs − t

5. Evaluate the interface nodes xs = Ã−1
s,sb̃s (where needed)

6. Solve locally the inner nodes from Ap,pxp = bp −Ap,sxs

Note that vector t represents a temporary storage area. Only a global reduction
communication episode is needed on the stage 3.

Limitations of the DSD algorithm

Although the DSFD algorithm has been successfully used to perform DNS simulations
on a low-cost PC cluster using up to 40 processors [4, 3] several scalability problems
arise with the growth of the number of CPUs and the mesh size [2].

The first and most important problem is related to the RAM memory require-
ments. Under certain simplifications (for a detailed deduction, see [2]) the total
number of array positions that each processor needs is approximately

N2d
t ≈ 3M

(
Nyz

P

)3/2

+ 4I2Nyz
P 1/2 − 1

P 1/2
(1.35)

where P is the number of processors, Nyz = Ny×Nz is the number of unknowns in each
plane, M is the scheme stencil size and I is the interface size (see figure 1.2). Note that
the main difficulty arises from the interface equation (second term of r.h.s. of Eq. 1.35)
whose RAM memory requirements grows quadratically with I and remains almost
independent of the number of processors P . Thus, the use of the DSD algorithm on
a parallel computer with any number of CPUs is limited by the RAM memory of one
single CPU node. Moreover, since M and I are increasing functions of the order of
the scheme o4, RAM memory requirements may also become a serious obstacle to use
DSD for high-order schemes.

4For the family of discretizations here considered:

M = o− 1 (1.36)

I = o− 1 (1.37)
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Apart from the memory problems, there are other issues that may prevent the
efficient use of DSD solver for large-scale problems. Firstly, DSD method needs at least
one big collective communication for global reduction operation for the summation of
the interface nodes (stage 3 of the algorithm). The data from all the interface nodes
must be spread between all the CPUs. Under certain approximations, the size of data
transmission can be estimated as

CS = O
(
Nx log2(P )

√
NyzP

)
(1.38)

The previous expression shows that data exchanged for each CPU grows with both
the number of processors and the number of unknowns. When the number of CPUs
is relatively small this communication is not specially time consuming, but with the
growth of the number of processors, and depending on the computer architecture, it
may affect negatively the scalability of the method.

Secondly, computational cost per CPU of the matrix-vector product xs = Ã−1
s,sb̃s

(step 5 of the DSD algorithm) demands O (N) floating point operations. Thus, the
cost only depends on the problem size not the numbers of processors. Although for
small- and medium-size meshes this is not really a serious problem, for really large
problems this stage may eventually limit the scalability of the algorithm.

Finally, the computational cost related with the distributed evaluation of the
inverse of the Schur complement matrix, Ãs,s, grows fast with P and Nyz. Thus, for
large meshes that demand a large number of CPUs, the cost of the pre-processing
stage can become not negligible at all with respect the cost of the DNS simulation
itself.

It must be noted that the weight of all these scalability limitations would depend
on the mesh size, the number of CPUs, the computer architecture and the total time-
integration period demanded for our applications5. In conclusion, all these scalability
limitations motivate the necessity to investigate a different approach for really large-
scale problems.

1.3.3 Alternative: use of the DSD as a preconditioner for a
Krylov-subspace method

If due to the aforementioned scalability limitations the DSD method cannot be applied
efficiently (or cannot be applied at all) to couple all the planes then it can be used to
couple only some planes of the set (1.26). In this case, the rest of planes can be solved

5Based on our experience, for real CFD applications the use of the DSFD algorithm is feasible
for problems with mesh sizes up to ∼ 6× 106 points and 30 ∼ 50 processors



1.3. Krylov-Schur-Fourier Decomposition algorithm 35

using an iterative method. Moreover, DSD itself can be used as an auxiliary direct
solver or preconditioner inside of the iterative method. In the later case, the DSD
algorithm is used to couple some parts of the plane and the iterative method provides
coupling of the whole plane. Henceforth, we will refer those parts of the plane that
are coupled with the DSD solver as blocks. For a detailed survey about the existing
preconditioning techniques for sparse linear systems the reader is referred to [25].

Algorithm of the preconditioned CG method

Each plane corresponds to the system of equations in the set (1.26). Once again, since
all planes are fully decoupled, only the solution of one arbitrary plane is considered.
Thus, the system to be solved is6

Ax = b (1.39)

Since the matrices A are, by construction (1.15), a symmetric positive definite
non-singular7 matrix (see section 1.3.4 for details) the Conjugate Gradient (CG)
method [16] is chosen as the most appropriate. The plane is decomposed into blocks
and each block is coupled with the DSD solver. Thus, the matrix A is splitted as
follows

A = AD + AI (1.40)

where matrix AD results from matrix A after discarding elements that correspond to
the coupling between different blocks. An example of the decomposition of one plane
into 4 blocks is displayed in figure 1.3.

Then, iterative CG solver uses DSD algorithm as a direct solver for each block,
DSD (AD,b), as a preconditioner which provides exact solution for the system ADx =
b. Therefore, the preconditioned CG algorithm results

First iteration:

1. r0 = b−Ax0

2. z0 = DSD
(
AD, r0

)

3. p1 = z0

6Indexes are dropped for the sake of clarity.
7Originally there is one plane whose corresponding A matrix is singular. In this case, singularity

is removed preserving the symmetry by changing one element on the main diagonal that corresponds
to an arbitrary inner node. This modification fixes the value of this particular node to zero.
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Inner coupling of blocks
is discardedAI

Block 1

Block 2

Block 3

Block 4

Band diagonal matrixA
Coupling between
blocks is discardedAD

+=

Figure 1.3: Decomposition of one plane into 4 blocks. Structure of matrixes AD

and AI

i-th iteration:

1. zi−1 = DSD
(
AD, ri−1

)

2. ∗ ρi−1 = ri−1T · zi−1

3. βi−1 = ρi−1/ρi−2

4. pi = zi−1 + βi−1pi−1

5. Update halos for pi

6. qi = Api

7. ∗ αi = ρi−1/(piT · qi)

8. xi = xi−1 + αipi

9. ri = ri−1 − αiqi

10. ∗ Calculation of residual norm

where ∗ operations imply collective communication for global reduction operation:

• Summation of a single value: steps 2 and 7

• Maximum of a single value: step 10
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1.3.4 Properties of Â2D
i that affect the convergence of the it-

erative method

The number of iterations needed to converge a Krylov-subspace method is closely
related with the spectral condition number, κ

(
Â2D

i

)
. Well-posed systems (κ keeps

close to unity) converge easily whereas they tend to degrade fast when the system
becomes ill-posed (κ >> 1). In our particular case, as the matrices Â2D

i are symmetric
and positive semidefinite, the condition number κ is given by

κ
(
Â2D

i

)
=

maxj

{
λj

(
Â2D

i

)}

minj

{
λj

(
Â2D

i

)} (1.41)

where λj

(
Â2D

i

)
∈ R+

0 denotes any of the eigenvalues of Â2D
i .

A complete analytical approach is beyond the scope of this paper. Nevertheless,
the essential ideas and results can be conveyed in a more intuitive manner without
the mathematical machinery required for the most general cases. In the following
subsections relevant theoretical properties are analysed.

Singularity of Â2D
1

After the Fourier decomposition, singularity of A3D (see [2], for details) is inherited
only by the transformed system of the first plane (Eq. 1.26 with i = 1). According to
(1.25) the sum of all non-null terms of matrix Â2D

1 in each row is zero

âp
1,j,k = (λ1)j,k = ap

j,k + 2
Nx/2−1∑

r=1

aer

j,k

= −
Nx/2−1∑

r=1

(
abr

j,k + asr

j,k + anr

j,k + atr

j,k

)
(1.42)

Recalling that matrix Â2D
1 exactly corresponds to the 2D discrete Poisson equation [1],

it can be shown (by construction) that Â2D
1 is a positive semi-definite matrix

xtÂ2D
1 x ≥ 0 , ∀x 6= 0 (1.43)

Therefore, former expressions (1.42) and (1.43) imply that minimum eigenvalue of
Â2D

i is equal to zero,
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minj

{
λj

(
Â2D

1

)}
= 0 (1.44)

whose associated eigenvector is the unity vector

Â2D
1 1 = 0 (1.45)

and consequently its spectral condition number is infinite

κ
(
Â2D

1

)
= +∞ (1.46)

Relation between two matrices Â2D
i1

and Â2D
i2

By construction, all the matrices of the set of systems (1.26) are equal except their
diagonal elements,

Di1,i2 ≡ Â2D
i1 − Â2D

i2 (1.47)

where difference diagonal matrix, Di1,i2 , can be directly evaluated from Eq.(1.25),

dj,k
i1,i2

= 2
Nx/2−1∑

r=1

aer

j,k (cos (rαi1)− cos (rαi2)) (1.48)

where αi = [2π (i− 1)] /Nx and dj,k
i1,i2

stands for the diagonal element of Di1,i2 associ-
ated with the (j, k)-position on the yz-plane8. Using the trigonometric double angle
formula previous expression results into a more convenient form

dj,k
i1,i2

= −4 {gj,k (αi1)− gj,k (αi2)} (1.50)

where

gj,k (α) ≡
Nx/2−1∑

r=1

aer

j,ksin2
(
r
α

2

)
(1.51)

8Therefore, for the standard rowwise lexicographical ordering dj,k
i1,i2

is given by

dj,k
i1,i2

≡ [Di1,i2 ]jNy+k,jNy+k (1.49)
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Moreover, it can be shown that for the family of discretizations here considered fol-
lowing properties are hold9

∂

∂α
gj,k (α)

{
< 0 , 0 < α < π
> 0 , π < α < 2π

(1.52)

gj,k (α) < 0 , 0 < α < 2π (1.53)

Taking i2 = 1, expression (1.50) becomes

dj,k
i1,1 = −4gj,k (αn) (1.54)

that combined with property (1.53) guarantees that matrices Di1,1 are positive-
definite

xtDi1,1x > 0 , ∀x 6= 0, i1 > 1 (1.55)

for any value of Nx. Finally, expressions (1.43) and (1.55) automatically imply that
matrices Â2D

i (with i > 1) are also definite-positive

minj

{
λj

(
Â2D

i

)}
> 0 , i > 1 (1.56)

Moreover, from (1.54) it can be viewed that matrices Â2D
i are paired as follows

Â2D
i1 = Â2D

i2 , if (i1 + i2 − 2) = Nx (1.57)

9Proof for the second-order discretization is straightforward. However, a formal proof for generic
order case is beyond the scope of this paper. Anyhow, exhaustive numerical experiments have been
successfully performed to assess the validity of these identities.
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Hence, later property allows us to almost10 halve the number of different systems
to be solved. Now, each system have to be solved twice. Consequently, the set of
systems (1.26) reduces

Â2D
1 x2D

1 = b2D
1 (1.58)

Â2D
i x2D

i = b2D
i

Â2D
i x2D

Nx−i+2 = b2D
Nx−i+2

}
i = 2, · · · ,

Nx

2
(1.59)

Â2D
Nx/2+1x

2D
Nx/2+1 = b2D

Nx/2+1 (1.60)

where matrices Â2D
i are ordered descending condition number. That is,

κ
(
Â2D

i

)
> κ

(
Â2D

i+1

)
i = 1, · · · ,

Nx

2
(1.61)

which follows from the property (1.52) of gj,k (α) function.

Halving the number of linear systems to be solved is an important issue. Although
it is apparently irrelevant in terms of computational cost it may become important
in terms of RAM memory requirements and subsequently reduce the computational
cost of the global algorithm. Therefore, further we only consider the set of matrices
from 1 to Nx/2 + 1.

Spectral condition number of Â2D
i : a simplified analytical approach

Nevertheless, to know how well-posed are our systems we need more information
about their spectral condition number, κ

(
Â2D

i

)
. A complete analytical approach for

the general case is beyond the scope of this paper. However, the essential ideas and
results can be conveyed for the second-order scheme on a uniformly distributed mesh.
For this simplified case, matrix Di,1 reduces

Di,1 = 4hsin2

(
π(i− 1)

Nx

)
I (1.62)

where h is the mesh spacing. Consequently all matrices Â2D
i will have the same

eigenvectors and their eigenvalues will be given by

λj

(
Â2D

i

)
= λj

(
Â2D

1

)
+ 4hsin2

(
π(i− 1)

Nx

)
(1.63)

10Note that matrices Â2D
1 , corresponding to the zero-frequency plane, and Â2D

Nx/2+1
, correspond-

ing to the highest-frequency plane, are not paired with any other matrix.
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and the corresponding spectral condition number

κ
(
Â2D

i

)
=

maxj

{
λj

(
Â2D

1

)}
+ 4hsin2 (π(i− 1)/Nx)

minj

{
λj

(
Â2D

1

)}
+ 4hsin2 (π(i− 1)/Nx)

(1.64)

Gershgorin circle theorem gives an upper bound for maxj

{
λj

(
Â2D

1

)}

maxj

{
λj

(
Â2D

1

)}
≤ 8h (1.65)

that combined with (1.44) leads

κ
(
Â2D

i

)
≤ 1 +

2
sin2 (π(i− 1)/Nx)

(1.66)

that gives an approximate idea of how well-posed are the systems to be solved as a
function of the relative number of plane defined as

ξ (i, Nx) ≡ 2 (i− 1)
Nx

(1.67)

Convergence analysis of CG algorithm provide an upper bound on the convergence
rate (see [16], for instance)

‖en
i ‖Â2D

i
≤ 2

( √
κ− 1√
κ + 1︸ ︷︷ ︸

ω

)i ∥∥e0
i

∥∥
Â2D

i

(1.68)

where en
i = xn

i −
(
Â2D

i

)−1

b2D
i is the solution error after n iterations and the A-norm

is defined as ‖e‖A = (etAe)1/2. Then, after some straightforward calculations, the
convergence rate ω can be upper bounded as a function of ξ

ω (ξ) ≤ 1
1 + S

√
S2 + 2 + S2

(1.69)

where S = sin(ξπ/2). Former function is displayed in figure 1.4 (solid line).

Preliminary numerical experiments

To assess the validity of the simplified analytical approach described in the previous
sections some numerical experiments have been performed for a real CFD application.
Test case B3D (see table 1.1) has been chosen as starting point. It corresponds to
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a natural convection flow in an air-filled differentially heated cavity of aspect ratio
4 and Ra = 109 (a detailed description of this case is given further in chapter 2).
Residual criteria for each plane is set to

||ri||∞
||r0

i ||∞
≤ 0.01 , i = 1, · · · , Nx (1.70)

where r0
i is the initial residual. Each plane is decomposed into 32 blocks, dividing y-

and z-directions into 4 and 8 parts, respectively. Each block is solved directly with a
local band-LU solver. Number of iterations needed to obtain solution of each plane
is averaged over 1000 time-steps.

In figure 1.4 (top), the number of iterations required to reach the prescribed ac-
curacy in function of ξ are displayed. As expected, these results show very significant
differences in the number of iterations. Number of interations remains almost equal
for both second- and fourth-order discretizations. In figure 1.4 (middle), the esti-
mated convergence rates ω are compared with the idealised second-order upper-bound
(1.69). It is observed that qualitatively both plots resemble quite well the idealised
limit. Quantitative differences are due to local band-LU preconditioning.

In figure 1.4 (bottom), the same test in performed for there different values of Nx

keeping the same spatial discretization in the two non-periodic directions and using
a fourth-order discretization. The qualitative behaviour remains the same. However,
the number of iterations tends to reduce with the growth of Nx (except for the first
plane). This effect may be due to the availability of better initial guesses when finer
meshes are used. In conclusion, numerical experiments corroborate the idea of using
various strategies to obtain solution on different planes.

1.3.5 Residual criteria and initial guess

The final performance of an iterative method strongly depends on both the level of
accuracy demanded for the application it is being used for and the availability of
“good” initial guesses. Respect the first, it is generally accepted that a “relatively”
high level of accuracy is demanded for time-accurate DNS/LES simulations. However,
despite the great importance of this issue very few works have focussed his attention to
elucidate which is the minimum level of accuracy required for such applications. Ac-
cording to authors’ opinion this situation responds to the availability of direct solvers
for most of DNS/LES applications or very good initial guesses, that allow to keep the
Poisson equation overresolved without a significant increasing of the computational
cost, for iterative methods. In the following paragraphs we briefly analyse these key
aspects. Firstly, a non-dimensional mesh-independent criteria for residual is derived
from the discrete incompressibility constraint. Then, such criteria is verified for a
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Figure 1.4: Top: comparison of convergence properties of the planes using

second- and fourth-order discretizations. Middle: estimated convergence rate ω.

Bottom: same plot for different number of planes right.

series of simulations by direct comparison with reference solutions obtained using a
direct solver. Finally, the initial guess problem is discussed.
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Choice of residual criteria

Once the discrete Poisson equation (1.16) is solved the new discrete velocity field
un+1

h results from the correction

un+1
h = up

h − Gph = up
h + Ω−1Mtph

taking the divergence of the previous expression leads

Mun+1
h = Mup

h + MΩ−1Mtph = Mup
h − Lph

Therefore, it is shown that, after the correction, the residual of discrete Poisson
equation (1.16)

rh = −Lph + Mup
h

is exactly equal to minus the discrete divergence of the velocity field un+1
h (1.71)

rh = Mun+1
h (1.71)

Thus, residual of Poisson solver is directly related to a physical quantity. After
analysing results of multiple DNS simulations using different meshes and Ra-numbers
the following criteria is proposed - to fix the level of decrease of the discrete divergence
norm:

∣∣∣∣Mun+1
h

∣∣∣∣
∞

||Mup
h||∞

≤ ε (1.72)

where Mup
h is the value of the discrete divergence of the velocity field before veloc-

ity correction. Fixing this ε can provide sufficiently accurate solution for different
meshes11.

Verification of the criteria and evaluation of ε

The criteria is to be used with the same ε with no dependence on the number of
nodes.

Firstly, series of DNS simulations using different meshes and Ra-numbers have
been accomplished in order to find out which ε level provides sufficiently accurate

11Corresponding criteria for residual norm for each plane is following: ||ri||∞ ≤ ε, i = 1, .., Nx

The value ε is corrected automatically during computations: if obtained solution does not satisfy
criteria (1.72) then solution is repeated with smaller ε. This way proper ε is set within few first time
steps and then only rare corrections may be needed during simulation.
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solution and to ensure that this level is equal for all cases. The test cases chosen
are a set of 2D and 3D turbulent natural convection flow in air-filled differentially
heated cavity of height aspect ratio 4 (detailed description of the problem is given in
chapter 2). Case parameters are presented in table 1.1.

Case Nx Ny Nz Ra Pr Order
C2D - 39 78 109 0.71 2nd

B2D - 78 156 109 0.71 2nd

C3D 16 39 78 109 0.71 4th

B3D 32 78 156 109 0.71 4th

Table 1.1: Physical and numerical parameters of the tested cases.

Averaged first and second-order statistics are compared. Since they correspond
to time-integration of random processes special care must be taken. We must be
sure that differences observed are only due to insufficiently accurate solution of the
Poisson equation. Hence, finite time integration period must be long enough (in
practice, about 50-100 periods of the lowest significant frequencies suffices). To eval-
uate acceptable level of difference in results for an iterative method two DNS using
DSFD algorithm (direct solver) have been carried out for each case. These two DNS
simulation have different random seeds to generate the initial random temperature
distribution providing results for two different random processes. Since the Poisson
equation is solved directly the differences observed in averaged results are only due
to finite integration period and it gives the idea of the acceptable range for solutions
using iterative solver.

The numerical tests have shown that reduction of initial norm of divergence by a
factor of 10 is sufficient to obtain accurate enough solutions. It must be noted that
this value may be valid only for this particular explicit algorithm (see section 2.2.2)
and differ for other CFD applications.

Initial guess for iterative solver

Initial guess
(
x0

i

)n+1 at instant n + 1, is obtained by linear extrapolation using two
previous solutions:

(
x0

i

)n+1
= 2 (xi)

n − (xi)
n−1

, i = 1, · · · , Nx (1.73)

This way allows to reduce substantially initial residual for an iterative solver.
Moreover, this prediction has an important property that should be noted.
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Figure 1.5: Iteration number for different initial divergence norm reduction ε
(case B3D).

The number of iterations increases with the accuracy imposed for the Poisson
equation, but the accuracy enhances the prediction of the initial guess for the next
time step and this reduces the next number of iterations. Therefore, changes in
the accuracy do not translate immediately to changes in the cost, as can be seen in
figure 1.5. This results may explain why, in the context of DNS/LES applications,
relatively little attention has been paid to determine the required level of accuracy
for Poisson equation.

1.4 Scalable KSFD solver model

The set of two-dimensional problems to be solved (Eqs. 1.58-1.60) are numbered de-
scending the condition number. Hence, a plane with smaller number would require
more iterations. Since conditioning number of first plane is infinity an special treat-
ment may be required. According to these features different methods can be applied
for different planes.

Planes are decomposed into blocks. The size of block governs the number of
iterations: the smaller is block the bigger is number of iterations because the smaller
parts of plane are coupled directly. But bigger block size requires more memory and
computations. For this reason the block size can be chosen independently for each
plane to minimise computational price needed to perform all iterations and obtain
solution. This way gives a flexible solver model that can be efficiently used on different
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parallel systems.

The number of blocks in the i-th plane is denoted by Si. This parameter can be
varied from 1 to Nyz. Configuration with only one block (Si = 1) means that the
entire plane is solved using the direct DSD method; on the opposite extreme, Si =
Nyz, means that iterative CG method using a Jacobi preconditioner is being used.
Intermediate values corresponds to configurations where CG method is preconditioned
using DSD algorithm to solve each block. We denote Pyz = Py × Pz as the total
number of CPUs that cooperate to solve one plane. Thus, each plane is decomposed
into Pyz subdomains. Then, two different situations are possible,

1. Si < Pyz; blocks are bigger than subdomains. Then, to solve each block a DSD
parallel direct solver is used.

2. Si ≥ Pyz; blocks are equal or smaller than subdomains. In this case, an incom-
plete band-LU factorisation with a drop tolerance of 10−4 is used to solve each
block directly.

1.4.1 Flexible solver configurations

The general idea behind is demonstrated on a simplified example of the KSFD solver
configuration. The set of planes is divided into three groups:

1. Si = 1; planes corresponding to the first group are solved directly using DSD
method described in section 1.3.2.

2. Si = Pyz; blocks of planes of second group are set equal to subdomains.

3. Si > Pyz; for the third group blocks are set smaller than subdomains.

Hence, this simplified configuration is governed by 3 parameters:

• D1; the first delimiter 0 ≤ D1 ≤ Nx.

• D2; the second delimiter D1 ≤ D2 ≤ Nx.

• B ; number of blocks within subdomain for the third group.

Therefore, planes with number i ≤ D1 belong to first group. Second group includes
planes with number D1 < i ≤ D2. Rest of planes belong to third group, whose number
of blocks is given by Si = B × Pyz.

In the figure 1.6, three basic types of KSFD solver configurations are displayed:
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Figure 1.6: Solver configurations example.

1. All the planes are solved directly using the DSD algorithm (D1 = D2 = Nx) (this
situation corresponds to our previous approach [5, 2]). This solver configuration
works well on systems with relatively small number of CPUs and moderate
large problems. It is specially designed for high-latency parallel systems. Main
limitation is the RAM memory requirements (see section 1.3.2).

2. Direct solution with DSD of first few planes and iterative solution of other planes
using blocks of subdomain size or smaller (1 < D1 < Nx). This can be used
on systems with bigger range of CPU number. In general, iterative solution
of the last planes is more efficient than DSD solver. This configuration can be
also used on relatively small number of CPU when mesh size is too big to use
previous configuration due to RAM memory limitations.

3. Direct solution with DSD of only the first plane (D1 = 1) and iterative solution
for the rest of planes using blocks of subdomain size or smaller. This configura-
tion can be used on the edge of capabilities of DSD method on systems with for
example 64− 256 CPUs (or even larger). In this case application of DSD even
for only one plane is mostly limited by preprocessing stage computing time. The
first plane is especially problematic for iterative solution, hence using DSD for
only the first plane makes solver substantially faster.

1.4.2 Illustrative parallel performance test

The test case chosen to measure the performance of the KSFD algorithm corresponds
to a DNS simulation of a turbulent natural convection flow in air-filled (Pr = 0.71)
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differentially heated cavity of aspect ratio 4 and Ra = 1011. More details of this
configuration can be found in chapter 2. Residual criteria is set to ε = 10−5. Parallel
performance tests were carried out on two different parallel systems:

• MareNostrum supercomputer of the Barcelona Supercomputing Center (BSC).
It is an IBM BladeCenter with 10240 PowerPC 970MP processors at 2.3 GHz.
Dual nodes with 8 Gb (4 Gb per node) are coupled with a high-performance
Myrinet network. Auxiliary 1 Gbit Ethernet network is used for shared file
system.

• JFF cluster of the Heat and Mass Transfer Technological Center (CTTC). It is
a Beowulf PC cluster based on common office computer equipment. 40 single
CPU nodes with AMD Athlon 2.6 GHz processors and 1 Gb of RAM are coupled
with an Ethernet 100 Mbits/s network.

Roughly speaking, the two main differences between these two parallel systems are
the network performance (Myrinet network latency has smaller latency and bigger
bandwidth than JFF Ethernet network) and the number of CPUs (BSC has allowed
us to perform simulations using up to 1024 processors).

Demonstration of configuration choice for two different parallel systems

The following test has been chosen to illustrate the way the KSFD solver can be easily
adapted for different kind of parallel systems to provide maximal performance. The
mesh size is 64 × 240 × 460 (≈ 7 × 106 nodes). Test is performed using 32 CPUs
and domain is consequently decomposed into 32 subdomains (Py = 4 and Pz = 8,
respectively). Then, four basic solver configurations (see figure 1.8) are tested:

1. D1 = 64; direct solution with DSD.

2. D1 = 0, D2 = 64; blocks are equal to subdomains.

3. D1 = 0, D2 = 0, B = 4; each subdomain is divided into 4 blocks.

4. D1 = 0, D2 = 0, B = 16 each subdomain is divided into 16 blocks.

To measure the averaged computing time of each plane ti, we measure the total
computing time, T , to solve the entire set of planes and the number of iterations
to solve the i-th plane, Ii. These quantities are obtained after averaging over 200
time-steps. Since for the tested configurations the computational cost per iteration
is equal for all planes, computing time per plane is proportional to the number of
iterations
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Figure 1.7: Comparison of the solver configurations for different systems: JFF

(left) and MareNostrum supercomputer (right). Computing time for each plane is

represented using each of the four proposed configurations. This allows to obtain

the optimised configuration choosing for each plane the best one. Results for ξ = 0,

several orders of magnitude larger, have not been displayed.

ti =
IiT∑Nx

r=1 Ir

(1.74)

Then, direct comparison of the computing time of each plane allows to obtain
the optimised configuration built from these four tested configurations. In figure 1.7,
results for both parallel systems are displayed. As expected, solution of first plane
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requires so many iterations that its results have been omitted. Hence, using the com-
puting time measurements represented in figure 1.7 following optimised configurations
are obtained:

1. D1 = 1, D2 = 3, B = 4 for JFF cluster.

2. D1 = 5, D2 = 5, B = 4 for MareNostrum.

It must be noted that DSD solver, in this particular case, is about 4 times faster
on MareNostrum than on JFF cluster while overall computing time of the optimised
configuration is only about twice faster. This is due to the substantial advantage of
MareNostrum in network bandwidth which becomes especially important for DSD
global summation operation. For this reason more planes are solved directly in con-
figuration optimised for MareNostrum. Optimised configurations are displayed in
figure 1.8.
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Figure 1.8: Optimised configurations for different parallel systems

Speed-up test

The speed-up, S, the ratio between the computing time needed by one processors
and P processors, is traditionally employed as a measure of the parallel performance
of a parallel algorithm. However, S is difficult to measure in a realistic situation
because the algorithm is designed for large problems that usually can not be solved
by a single processor (neither for a reduced number of processors). A speedup test
has been carried out on the MareNostrum supercomputer. Mesh size is 32×170×320
(≈ 1.7× 106 points). This test shows how KSFD solver can be adapted for different
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number of CPUs to provide optimal performance and scalability. Following solver
configurations are considered:

1. D1 = 32; direct solution with DSD (type C1 in figure 1.6).

2. D1 = 5, D2 = 10, B = 9; direct solution of planes from 1 to 5; preconditioned
CG for the rest (type C2 in figure 1.6).

3. D1 = 1, D2 = 10, B = 9; direct solution of first plane; preconditioned CG for
the rest (type C3 in figure 1.6).

The speed-up results for these three configurations are displayed in figure 1.9.
Measurements start from 1 CPU (sequential configuration) for the first configuration
where DSD algorithm reduces to band-LU12 algorithm.

For a relatively low number of CPUs configuration S1 provides optimal results
(see figure 1.6). Then, as expected, it begins losing efficiency and is replaced by con-
figuration S2. Finally, configuration S3 provides optimal scalability for large numbers
of CPUs: it reaches a speed-up of 153 for 200 processors.
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Figure 1.9: Speedup results

1.4.3 Parallelisation in the periodic x-direction

It has been shown that an efficient direct solution of the first plane, whose condition
number is infinite (1.46), is crucial for the scalability of the KSFD solver to very large-
scale problems. However, the huge amount of RAM memory demanded for the DSD

12Band-LU decomposition can not be fitted in memory of 1 CPU, thus computing time for only
one plane was measured and then scaled by a factor of 32.
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may eventually limit its scalability. Moreover, increasing the number of processors
do not help too much in terms of memory (see Eq. 1.35) and increase the amount of
data to be transfered (see Eq. 1.38).

Therefore, in this context, parallelisation in the x-periodic direction becomes nec-
essary. Hence, computational domain is now decomposed into P = Px × Py × Pz

subdomains. Coordinates of each subdomain will be referred as px, py and pz, respec-
tively. Then, two different kind of subsets are considered:

1. 1D-subsets; that is, groups of processors with the same py and pz. Size of each
subset is Px and there are Py × Pz 1D-subsets.

2. 2D-subsets; that is, groups of processors with the same px. Size of each subset
is Py × Pz and there are Px 2D-subsets.

Then, this strategy allows to divide that total number of processors P into Px

2D-subsets that solve its own set of planes. Doing so, more memory resources are
available for those planes solved using the direct DSD algorithm. Additionally, the
computational cost of the preprocessing stage to compute the inverse of Schur com-
plement matrices, Ã−1

s,s, is significantly reduced.

Therefore, the set of 2D problems to be solved (1.58-1.60) is now splitted into
Px parts. Each part, that consists13 of Nx/Px planes, is then solved by a 2D-subset
of processors. However, the straightforward implementation (planes assigned to 2D-
subsets according to the ordering defined in Eq. 1.58 and 1.59) is not convenient
because a substantial load imbalance appears: first 2D-subset would have planes with
the worst convergence properties meanwhile the last subset would have to deal with
the best conditioned systems of the set.

Thus, it becomes necessary to re-order the planes in such a way the load imbalance
be minimised. Here, we propose to use the following mapping function

i ↔ {(i− 1) mod Px}Px +
⌈

i

Px

⌉
(1.75)

where d·e denotes the ceiling function. The same configuration is applied to each
2D-subsets of planes. That is, the same solver configuration will be used for all the
i-th planes of each 2D-subset. Doing so, load imbalance between subsets of processors
is minimised.

Parallelisation in periodic x-direction is performed by just replication of data for
Poisson equation. Then, modified algorithm results

1. Replication of initial guess vector x3D
0 and right-hand-side vector b3D within

1D-subsets.
13Here, we assume that Nx is divisible by Px.
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2. FFT transforms original system (1.17) into (1.26).

3. Solution of Eq.(1.26) by Px 2D-subsets of processors.

4. Replication of the solution within 1D-subsets.

5. Inverse FFT transforms solution of (1.26) into the solution of (1.17).

Additional broadcast communications are required within each of 1D-subset to
provide data replication in stages 1 and 4. Once the data is replicated forward and
inverse FFT algorithm can be applied in stages 2 and 5 without parallelisation to
vectors of size of Nx elements; like if there were no domain decomposition on x-
direction. Thus, on the solution stage 3, each of 2D-subsets has all Nx planes but only
Nx/Px of them to be solved. Then, solution is replicated again within 1D subgroup
on stage 4. Finally, inverse FFT transform is applied to obtain the solution of the
Poisson equation.

However, the cost of these broadcast operations needed on stage 1 and 4 grows14

fast with Px. Therefore, the strategy to be followed should be, for a given problem,
try to keep the size of 2D-subsets (Py×Pz) as big as possible within limitations of the
DSD method in order to minimise Px. Keeping Px relatively small means that big
broadcast operations are not especially time consuming and they do not substantially
affect the solver parallel efficiency. This is because communication is done only within
small 1D-subsets of Px processors. Moreover, it must be noted that time consumption
of forward and inverse FFT operation is negligible in comparison with overall Poisson
solver. Hence, in our context, there is no need to parallelise the FFT algorithm.

In practice, parallelisation in the periodic x-direction has substantially expanded
the range of fairly good scalability. It has allowed the KSFD solver to be efficiently
used for realistic applications using more than a thousand processors.

Speed-up results from 256 up to 1024 CPUs are displayed in figure 1.10. They
correspond to a mesh of more that 111 × 106 points (128 × 680 × 1280). Details of
the simulation are given in the next section. For this test Py = 8 and Pz = 16 have
been kept constant whereas Px has varied (2 for 256 processors, 4 for 512 and 8 for
1024). Parallel efficiency for 512 CPUs is nearly 100% whereas for 1000 processors it
goes down to 70% approximately. This lost of efficiency is due to the increasing cost
of broadcast communications in stages 1 and 4.

14Of course, this cost would depend on the network performance of our parallel computer.
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Figure 1.10: Speed-up results parallelising in the periodic x-direction.

1.5 Conclusions

A new parallel Poisson solver that provides a fairly good scalability for a wide range of
problem sizes and computer architectures have been presented. The previous version
of the solver, called Direct Schur-Fourier Decomposition (DSFD) algorithm [5, 2],
was conceived for low-cost PC cluster and allowed us to perform DNS simulations of
turbulent natural convection flows [4, 3]. However, such method can not be used for
arbitrarily large number of processors and mesh size, mainly due to RAM memory
limitations [2]. To do so, a new version of the solver, named Krylov-Schur-Fourier
Decomposition (KSFD) has been presented and described in this paper. It basically
consists on solving the set of 2D problems using a CG method preconditioned by
the DSD algorithm [1]. Each plane is decomposed into blocks that are solved with
the DSD solver. The number of blocks governs the convergence properties of the
algorithm. Therefore, different strategies can be used for different 2D problems of the
set depending on how well-posed is the system to be solved.

The integration of the algorithm in an explicit parallel CFD solver, the problem of
the residual criteria and the scalable solver model have been described. For the sake
of clarity, main ideas behind the method have been exemplified for several problems
corresponding to real CFD applications. The scalability and flexibility of the KSFD
algorithm have been successfully shown by performing several numerical experiments
on both the MareNostrum supercomputer and a low-cost PC cluster. Speed-up re-
sults up to 1024 processors have proved that the algorithm scalability for large-scale
problems is good. Finally, KSFD algorithm performance was demonstrated on a DNS
simulation of a differentially heated cavity with Ra = 1011, Pr = 0.71 (air) and height
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aspect ratio 4. The DNS has been carried out using mostly 512 processors.
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Chapter 2

Direct numerical simulation
of a differentially heated 3D
cavity on MareNostrum
supercomputer
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entially heated cavity of aspect ratio 4 with Ra-number up to 1011
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Abstract.
A set of direct numerical simulations (DNS) of a differentially heated cavity of aspect

ratio 4 with adiabatic horizontal walls was presented in [3] [4] for Rayleigh number based
on cavity height 6.4× 108, 2× 109 and 1010. The set of DNS presented in this work covers
two more configurations with higher Rayleigh numbers 3 × 1010 and 1011, Pr = 0.71).
Together with previous results it gives a relatively wide range of Ra-numbers from weak to
fully developed turbulence. The DNS were performed on Marenostrum supercomputer using
scalable parallel Poisson solver represented in chapter 1. Up to 1024 processors were used
for solving meshes of up to 110 millions of nodes.

The main features of the flow, including the time-averaged flow structure, the turbulent
statistics, the global kinetic energy balances and the internal waves motion phenomenon are
described and discussed.

57
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Nomenclature

A1, A3 depth and height aspect ratios
g gravitational acceleration
β thermal expansion coefficient
ρ fluid density
T temperature
TH temperature of the hot wall
TC temperature of the cold wall
f body force
Ra2 Rayleigh number based on cavity width, (gβ∆TL2

y)/(να)
Ra3 Rayleigh number based on cavity height, (gβ∆TL2

z)/(να)
Pr Prandtl number, ν/α
x, y, z coordinates
u velocity field
p dynamics pressure
p̃ pseudo-pressure, ∆t/ (β + 1/2) p
Lx, Ly, Lz cavity depth, width and height
ν kinematic viscosity
α thermal diffusivity
∆T temperature difference, (Th − Tc)
C dimensionless stratification,
fBV Brunt-Väisälä frequency, (CPr)0.5/(2π)
M discrete divergence operator
uh discrete velocity vector
Ω size of control volumes
G discrete gradient operator
D discrete diffusive operator
C (uh) convective coefficient matrix
Nu Nusselt number
Nuc Nusselt number through the vertical mid-plane
∆t time step
t time
∆x, ∆y, ∆z mesh size

2.1 Introduction

Natural convection in differentially heated cavities (DHC) has been the subject of
numerous studies over the past decades. This configuration models many engineer-
ing applications such as ventilation of rooms, cooling of electronics devices or air
flow in buildings. Simultaneously, this configuration has served as prototype for the
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development of numerical algorithms. A summary of previous direct numerical sim-
ulations of air-filled (Pr = 0.71) differentially heated cavity relevant in our context
is presented in the next paragraphs. The coordinate system used here is: x for the
periodic direction and y (horizontal) and z (vertical) for the two wall-normal direc-
tions. Ra2 and Ra3 are the Rayleigh numbers based on the cavity width and height
respectively. A3 = Lz/Ly and A1 = Lx/Ly are the height and depth aspect ratios.
Unless otherwise mentioned, all cases use Boussinesq approximation.

The early numerical studies concentrated on configurations characterized by small
Rayleigh numbers in the steady laminar regime. After the pioneering work of Vahl
Davis & Jones [26], where the original benchmark formulation was establish for a set
of square two-dimensional cavities with 103 ≤ Ra ≤ 106, Hortmann et al. [27] used
a multigrid method to solve the problem with finer meshes up to 640 × 640. Latter,
solutions for the full range of two-dimensional steady-state solutions (Ra3 ≤ 108) have
been obtained using different methods by Le Quéré [28], Ravi et al. [29] and Wan et
al. [30]. The three-dimensional cubic cavity (A1 = A3 = 1), with adiabatic horizontal
walls and solid vertical walls in the third direction is also a well-known configuration,
but has received comparatively less attention (see Fusegi et al. [31]; Tric et al. [32]).
For large height aspect ratio cavities, in a certain range of Ra numbers, a steady-
state multicellular flow is obtained (see Lartigue et al. [33]; Le Quéré [34]; Schweiger
et al. [35]).

Beyond a critical Rayleigh number, the two-dimensional differentially heated cav-
ity flows become time-dependent (periodic, chaotic and eventually fully turbulent).
Due to the presence of high temperature areas at the bottom of the cavity, the configu-
ration with perfectly conducting horizontal walls is more unstable than the configura-
tion with adiabatic ones. Its transition to non-steadiness was studied by Winters [36],
obtaining a critical number of Ra3 = 2.109×106, later confirmed by Henkes [37]. For
the square cavity with adiabatic horizontal walls , Le Quéré & Behnia [38] determi-
nated the critical number as Ra = 1.82± 0.01× 108 and studied the time-dependent
chaotic flows up to Ra = 1010. For the case of cavities also with adiabatic horizontal
walls and height aspect ratio A3 = 4, Le Quéré [39] determined that there is a Hopf
bifurcation at Ra3 = 1.03 × 108 and that a chaotic behaviour is first observed at
Ra3 = 2.3 × 108. Two-dimensional chaotic flows have been studied by Farhangnia
et al. [40], who carried out a direct simulation for Ra3 = 6.4 × 1010 and by Xin &
Le Quéré [41], who studied the situations with Ra3 = 6.4 × 108, 2 × 109 and 1010.
The cavity with A3 = 8, with Ra2 = 3.4× 105 (unsteady), has been chosen as a test
problem (see Christon et al. [42], for example). For this configuration, the critical Ra2

number for the transition to unsteadiness is Ra2 = 3.0619 × 105. Time-dependent
two-dimensional flows have also been studied without using the Boussinesq approxi-
mation by Paolucci & Chenoweth [43] and Paolucci [44], for Rayleigh numbers up to
1010 and different aspect ratios.
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The transition from a two-dimensional steady laminar to a three-dimensional time-
dependent regime was first considered by Jansen et al. [45], for the case of a perfectly
conducting horizontal walls in a cubic cavity with solid vertical walls and numeri-
cally imposing flow symmetries. The critical Ra number was estimated to be be-
tween 2.25 × 106 and 2.35 × 106, larger than the equivalent critical number of a
two-dimensional cavity. An oscillatory flow regime was studied by Fusegi et al. [46]
in the same conditions, without assuming symmetry, for Ra = 8.5×106. For the case
of the adiabatic horizontal walls in a cubic cavity , the transition to unsteadiness was
studied by Jansen & Henkes [47], assuming symmetry too. The critical Ra number
obtained was between 2.5 × 108 and 3 × 108. However, the same configuration was
later studied without assuming symmetry by Labrosse et al. [48], obtaining a non-
symmetric transition for Ra = 3.19 × 107, significantly lower than in the equivalent
two-dimensional case. A direct simulation of a turbulent flow with Ra = 1010 was
carried out by Fusegi et al. [49], using a 62× 122× 62 mesh.

In a general differentially heated cavity problem with periodic vertical bound-
ary conditions where the boundary conditions do not force the flow to be three-
dimensional, there are three possible flow configurations: two-dimensional steady,
two-dimensional unsteady and three-dimensional unsteady. A question relevant in our
context is if there is a range of Rayleigh numbers where the flow is two-dimensional
but unsteady, this is, if the transitions to unsteadiness and three dimensionality are
simultaneous. This problem was considered in detail by Henkes & Le Quéré [50], for
square differentially heated cavities (A3 = 1) with adiabatic horizontal walls and per-
fectly conducting horizontal walls , using periodic vertical boundary conditions . In
both cases, it was found that three-dimensional perturbations are less stable than two-
dimensional perturbations, concluding that the assumption of bidimensionality is not
correct (in time-dependent square differentially heated cavity ). A three-dimensional
simulation was carried out for Ra = 108, with perfectly conducting horizontal walls ,
using A1 = 0.1 with four Fourier modes in the x-direction. Statistics of the flow
were recorded and compared with the statistics of the two-dimensional flow. The
most significant difference found was an increase of the heat transfer coefficient in
the three-dimensional flow. For cavities of height aspect ratio 4, the same question
was considered by Penot et al. [51]. Experimentally, it was found that in a cavity
of A1 = 1.33 there is a transition to unsteadiness at Ra3 ≈ 108, in good with the
results reported by Xin & Le Quéré [41]. Two-dimensional numerical simulations
confirmed this result. However, in a three-dimensional periodic vertical boundary
conditions simulation with a slightly lower Rayleigh number, Ra3 = 9.6 × 107, with
A1 = 1, the flow was found to be three-dimensional. Hence, these results seem to
indicate that for A3 = 1 and A3 = 4 (and large enough A1), the flows would never be
unsteady and two-dimensional. But this conclusion is not valid for other aspect ratios:
Xin & Le Quéré [52] showed that for A3 = 8, the critical number for the transition to
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unsteadiness is Ra2 = 306192 ± 10, while the two-dimensional to three-dimensional
transition is observed at a higher Ra2 number, at least ≈ 3.84× 105.

Concerning the turbulent regime, a three-dimensional DNS of a differentially
heated cavity with adiabatic horizontal walls and periodic vertical boundary con-
ditions with A3 = 4, Pr = 0.71 and Ra3 = 6.4 × 108 performed by Soria et al. [4]
provided worthful data to investigate three-dimensional effects, finding that the gen-
eral features of the averaged flow do not change significantly if the flow is treated
as two-dimensional. The main differences were found near the downstream corners
where stronger recirculations occur for the two-dimensional simulation. On the other
hand, turbulent statistics are substantially different, specially at the vertical bound-
ary layers where two-dimensional simulation incorrectly predicts very low turbulence
values. However, the Rayleigh number studied by Soria et al. [4], which is only ≈ 6
times above the critical value, corresponds to a very weak turbulent flow. Recently, a
set of two-dimensional and three-dimensional DNS simulations with Ra3 = 6.4× 108,
2× 109 and 1010 have been presented and analyzed by Trias et al. [3]. When compar-
ing two-dimensional and three-dimensional results significant differences are observed
in the flow dynamics. Large unsteady eddies observed in the two-dimensional simu-
lations do not persist in the three-dimensional counterparts. Their energy is rapidly
passed down to smaller scales of motion causing an evident reduction of the large-scale
mixing effect at the hot upper and cold lower regions and consequently a still mo-
tionless stratified cavity core is displayed. This also causes that the transition point
at the vertical boundary layers clearly moves downstream for the two-dimensional
simulations. These differences become more marked when the Rayleigh number is
increased. In conclusion, in the turbulent regime, three-dimensional simulations are
necessary for an accurate description of the flow, specially for turbulent statistics.

2.1.1 Motivation and summary of the present work

The main goal of the present work is to improve our understanding of the dynamics
of turbulent convection in a differentially heated cavity up to Ra-number 1011 (i.e.
three orders of magnitude higher than the critical Ra-number). To do so, a set of
five direct numerical simulations (DNS) of a DHC of aspect ratio 4 (Ra3 = 6.4× 108,
2 × 109, 1010, 3 × 1010 and 1011, Pr = 0.71) are presented and analyzed. They
cover a relatively wide range of Ra-numbers from weak to fully developed turbulence.
These configurations have been selected as an extension of our previous work [3] where
two-dimensional and three-dimensional results for the three lowest Ra-numbers were
presented and compared. Here, results for the two lowest Rayleigh numbers are
reported again while simulation at Ra3 = 1010 has been carried out again for a finer
mesh. Periodic boundary conditions in the x-direction are used because they allow
the study of three-dimensional effects due to intrinsic instability of the main flow and
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Figure 2.1: Differentially heated cavity problem.

not to the boundary conditions. Hence, a uniform mesh in such direction is suitable.
This is an important computational advantage because Fourier-based methods can
be used to solve the Poisson equation in one direction.

The present chapter is arranged as follows. In the next section the governing
equations and the numerical method are briefly described. In section 2.3, the main
features of the flows, including the time-averaged flow structure, the turbulent statis-
tics, the global kinetic energy balances and the internal waves motion phenomena are
presented and discussed. Finally, relevant results are summarized and conclusions are
given in section 2.4.
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2.2 Governing equations and numerical method

2.2.1 Governing equations

The cavity under consideration is of height Lz, width Ly and depth Lx (height and
depth aspect ratios are A3 = Lz/Ly and A1 = Lx/Ly, respectively) filled with an
incompressible Newtonian viscous fluid of kinematic viscosity ν and thermal diffusivity
α. To account for the density variations, the Boussinesq approximation is used.
Thermal radiation is neglected. Under these assumptions, the dimensionless governing
equations in primitive variables are

∇ · u = 0 (2.1)
∂u

∂t
+ (u · ∇)u =

Pr

Ra0.5
∇2u−∇p + f (2.2)

∂T

∂t
+ (u · ∇)T =

1
Ra0.5

∇2T (2.3)

where Ra1 is the Rayleigh number based on the cavity height (gβ∆TL3
z)/(να) and

Pr = ν/α and the body force vector is f = (0, 0, P rT ). The reference length, time,
velocity, temperature and dynamic pressure used for the dimensionless form are re-
spectively Lz,

(
L2

z/α
)
Ra−0.5, (α/Lz) Ra0.5, ∆T and ρ

(
α2/L2

z

)
Ra. With the above

reference quantities the vertical buoyant velocity, Pr0.5, and the characteristic dimen-
sionless Brunt-Väisälä frequency, fBV = (CPr)0.5

/ (2π), where C is the dimensionless
stratification of the time-averaged temperature field, are independent of the Rayleigh
number.

The cavity is subjected to a temperature difference ∆T across the vertical isother-
mal walls (T (x, 0, z) = 1, T (x, 1/A3, z) = 0) while the top and bottom walls are
adiabatic. At the four planes y = 0, y = 1/A3, z = 0, z = 1, non-slip boundary con-
dition are imposed for velocity. Periodic boundary conditions in the x-direction are
used,

u (x, t) = u (x + Lxex, t) (2.4)
T (x, t) = T (x + Lxex, t) (2.5)

The initial conditions are not relevant because the statistics of the flow are recorded
after a long enough time-integration period to reach a statistically steady-state be-
haviour. Periodic vertical boundary conditions are used because they allow to study
the three-dimensional effects due to intrinsic instability of the main flow and not to

1Here, for simplicity, the subindex 3 is dropped.
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the boundary conditions. If we furthermore consider that the cavity is filled with air
(Pr = 0.71) and that its height aspect ratio A3 is equal to 4, then the configuration
only depends on the Rayleigh number Ra and the depth aspect ratio A1.

2.2.2 Numerical method

Time-integration method

In order to simplify the notation, momentum equation (2.2) can be rewritten as

∂u

∂t
= R (u)−∇p (2.6)

where R (u) represents the right-hand-side terms of the momentum equation except
for the pressure gradient,

R (u) ≡ Pr∇2u− (u ·∇) u + f (2.7)

For the temporal discretization, a central difference scheme is used for the time
derivative term, a fully explicit second-order one-leg scheme [12] for R (u) and a
first-order backward Euler scheme for the pressure-gradient term. Incompressibility
constraint is treated implicit. Thus, we obtain the semi-discretized NS equations

∇ · un+1 = 0 (2.8)

(β + 1/2)un+1 − 2βun + (β − 1/2)un−1

∆t
=

R
(
(1 + β)un − βun−1

)−∇pn+1 (2.9)

where the parameter β is computed each time-step to adapt the linear stability domain
of the time-integration scheme to the instantaneous flow conditions in order to use
the maximum ∆t possible. For further details about the time-integration method the
reader is referred to [3].

To solve the velocity-pressure coupling a classical fractional step projection method [17,
18] is used. In the projection methods, solutions of the unsteady NS equations are ob-
tained by first time-advancing the velocity field u without regard for its solenoidality
constraint (2.8), then recovering the proper solenoidal velocity field, un+1 (∇·un+1 =
0). This projection is derived from the Helmholtz-Hodge vector decomposition the-
orem [19], whereby the velocity un+1 can be uniquely decomposed into a solenoidal
vector, up, and a curl-free vector, expressed as the gradient of a scalar field, ∇p̃. This
decomposition is written as
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up = un+1 + ∇p̃ (2.10)

where the predictor velocity up is

up =
2βun − (β − 1/2)un−1

β + 1/2
+

∆t

β + 1/2
R

(
(1 + β)un − βun−1

)
(2.11)

and the pseudo-pressure is p̃ = ∆t/ (β + 1/2) pn+1. Taking the divergence of (2.10)
yields a Poisson equation for p̃

∇ · up = ∇ · un+1 + ∇ · (∇p̃) −→ ∇2p̃ = ∇ · up (2.12)

The question of what boundary condition to use for the pressure equation (2.12) in
the non-periodic directions has led to much discussion. The main ideas were shortly
reviewed in [20]. The use of the normal component of the momentum equation is
commonly accepted as the most appropriate boundary condition, see for example [21].
However, at the discrete level on staggered grids with prescribed velocity boundary
conditions, as in our case, the incompressibility condition occurs naturally and no
specific boundary condition for the pressure needs to be specified as pointed out
in [22].

Finally, once the solution is obtained, un+1 results from the correction

un+1 = up −∇p̃ (2.13)

Therefore, the algorithm for the integration of each time-step is

1. Evaluate R
(
(1 + β)un − βun−1

)
.

2. Evaluate the predictor velocity up from Eq.(2.11).

3. Evaluate ∇ · up and solve the discrete Poisson (2.12) equation.

4. Obtain the new velocity field with Eq.(2.13).

It is well-known that due to stability reasons explicit temporal schemes introduce
severe restrictions on the time-step, while implicit discretization would improve the
overall stability. However, for the use of implicit methods in DNS of turbulent flows
the computational costs are rather high compared to those of explicit methods. This is
because of the underlying restrictions to time-step that are required to fully resolve all
temporal scales in the NS equations. Therefore, only explicit methods are considered
in the view of the lower costs.
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Spatial discretization

Governing equations (2.1-2.3) are discretized on a staggered grid in space by second- or
fourth-order symmetry-preserving discretizations [12]. Following the same notation,
the symmetry-preserving discretization of the Navier-Stokes equations becomes

Muh = 0 (2.14)

Ω
duh

dt
= −C (uh)uh + Duh + fh −Mtph (2.15)

where uh stands for the discrete velocity vector, Ω is a positive-definite diagonal
matrix representing the sizes of the control volumes, the convective coefficient matrix
C (uh) is skew-symmetric, the discrete diffusive operator D is a symmetric negative-
definite matrix and M is the discrete divergence operator. The discrete gradient
operator is the transpose of the discrete divergence multiplied by a diagonal scaling
G = −Ω−1Mt.

The main feature of such discretization is that it preserves the underlying symme-
try properties of the continuous differential operators. These global discrete operator
properties ensure both stability and that the global kinetic-energy balance is exactly
satisfied even for coarse meshes if incompressibility constraint is accomplished [12].
Energy transport equation is also discretized using a symmetry-preserving discretiza-
tion.

It must be noted that periodic boundary conditions are prescribed in the x-
direction because it allows to study the 3D effects due to intrinsic instability of the
main flow and not due to the boundary conditions [4, 3]. This case is also more
convenient from a computational point of view because the resulting flows are free
from boundary layers on the x-direction and therefore, the mesh can be coarser and
uniform in this direction. This allows to apply Fourier-based methods to solve the
Poisson equation.

Poisson solver

The discrete Laplacian operator of the Poisson equation can be viewed as the product
of the discrete divergence operator M by the discrete gradient operator, which is the
transpose of the discrete divergence multiplied by a diagonal scaling G = −Ω−1M.
So, the Laplacian operator is approximated by the matrix product L = −MΩ−1Mt.
Therefore the discrete Poisson equation to be solved at each time step is of the form

Lph = Mup
h (2.16)
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Based on a domain decomposition strategy, the parallelisation of the explicit parts
of the code is straightforward. However, the efficient solution of the discrete Poisson
equations is a critical aspect. Here, a new parallel Poisson solver, named Krylov-
Schur-Fourier Decomposition (KSFD) [53], that provides a fairly good scalability for
a wide range of problem sizes and computer architectures has been used. It basically
consist on combining a preconditioned Conjugate Gradient (CG) method in the two
wall-normal directions and an FFT in the periodic direction. Fourier decomposition
transform the original three-dimensional system into a set of two-dimensional system
that are solved using the CG method preconditioned by the DSD solver [1]. Each
plane is decomposed into blocks that are solved with the DSD solver. The number
of blocks governs the convergence properties of the algorithm. Therefore, different
strategies are used for different two-dimensional problems of the set depending on
how well-posed is the system to be solved.

The scalability and flexibility of the KSFD algorithm have allowed us to perform
efficiently DNS simulations on both a low-cost PC cluster (for the two lowest Ra-
number here presented) and the MareNostrum supercomputer. For further details
about the KSFD solver the reader is referred to the chapter 1.

2.2.3 Code and simulation verifications

The code was verified using the Method of Manufactured Solutions (MMS), described
by Roache [54] and tested for several benchmark reference results. Figure 2.2 displays
convergence tests for convective and divergence operators for orders of accuracy from
second- up to to eighth-order. In addition, as a symmetry-preserving discretatization
is being used, the exact fulfilment of the global kinetic energy balance has been used
as an additional verification. For more details about the code verification the reader
is referred to our previous works [4, 3].

As no subgrid-scale model is used in the computation, the grid resolution and the
time step have to be sufficiently fine to solve all the relevant turbulence scales. More-
over, a sufficient length in the periodic direction is required to ensure that turbulence
fluctuations are uncorrelated at a separation of one half-period. The time to begin
the averaging period t0 and the time integration period ∆ta have also to be long
enough to evaluate the flow statistics properly. Of course, for all these parameters, a
compromise between accuracy and computing time must be accepted. The physical
and numerical parameters for all cases are given in table 2.1. Grid spacing in the
periodic x-direction is uniform and the wall-normal points are distributed using a
hyperbolic-tangent function

(y)j =
Ly

2

(
1 +

tanh {γy (2 (j − 1) /Ny − 1)}
tanhγy

)
(2.17)
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Figure 2.2: Numerical errors versus mesh size for convective (top) and divergence

(bottom) operators for second-, fourth-, sixth- and eighth-order discretizations.
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Spatial resolution in the two wall-normal directions was determined by means of
a systematic procedure based on successive mesh refinements explained by Trias et
al. [3]. The mesh concentration factors γy and γz are computed to minimise the flow
gradients on the computational space for a set of representative instantaneous maps.
Note that grid resolution near the isothermal vertical walls (see table 2.1) is in quite
good agreement with the Ra−1/3 turbulent scaling2.

Case Ra Nx Ny Nz Lx γy γz

A 6.4× 108 128 156 312 2.0 1.5 1.5
B 2× 109 64 144 318 1.0 1.75 0.0
C 1010 128 190 462 1.0 2.0 0.0
D 3× 1010 128 338 778 0.5 2.0 0.0
E 1011 128 682 1278 0.25 2.0 0.0

Total Average
Case (∆y)min ∆t time time order
A 2.44× 10−4 1.26× 10−3 1000 800 2nd

B 1.88× 10−4 1.27× 10−3 800 550 4th

C 9.63× 10−5 6.25× 10−4 440 300 4th

D 5.45× 10−5 3.95× 10−4 280 180 4th

E 2.71× 10−5 1.76× 10−4 240 160 4th

Table 2.1: Physical and numerical simulation parameters.

Regarding the domain size and grid resolution in the homogeneous direction they
need to be adjusted to ensure that the turbulence fluctuations are uncorrelated at a
separation of one half-period and the smallest relevant scales are also well-resolved. To
do so, spanwise two-point correlations and one-dimensional energy spectra at different
(y, z)-locations have been used to check the suitability of the numerical simulation
parametres (see table 2.1) in the x-direction. Further details can be found in [3].

2.3 Results and discussion

2.3.1 Time-averaged flow

Averages over the three statistically invariant transformations (time, x1-direction and
central point symmetry around the centre of the cavity) are carried out for all fields.

2The product (∆y)min Ra1/3 takes values 0.210, 0.237, 0.207, 0.170 and 0.123 for meshes corre-
sponding to cases A, B, C, D and E, respectively.
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A B C D E
Nu 49.24 66.63 101.94 137.22 194.48
Numax 171.89 260.49 459.50 651.12 910.10
z 3.63× 10−3 0 0 0 0
σ (Nu)max 4.16 10.92 25.35 50.71 110.54
z 0.914 0.875 0.813 0.704 0.613
uymax 9.02× 10−4 6.36× 10−4 4.08× 10−4 6.11× 10−4 6.81× 10−4

y 2.22× 10−1 2.29× 10−1 4.70× 10−3 4.23× 10−3 3.52× 10−3

uzmax 2.22× 10−1 2.22× 10−1 2.23× 10−1 2.29× 10−1 2.24× 10−1

y 7.26× 10−3 5.76× 10−3 3.79× 10−3 3.00× 10−3 2.19× 10−3

4yRa1/4 4.62 4.87 4.79 4.99 4.93
uymax 2.72× 10−2 1.76× 10−2 8.93× 10−3 1.05× 10−2 1.15× 10−2

z 9.52× 10−1 9.57× 10−1 9.84× 10−1 9.76× 10−1 9.78× 10−1

uzmax 4.47× 10−2 1.67× 10−2 1.94× 10−3 3.64× 10−3 1.95× 10−3

z 6.91× 10−2 6.01× 10−2 9.63× 10−1 2.34× 10−1 3.68× 10−1

Tmax 8.91× 10−1 8.93× 10−1 9.09× 10−1 9.03× 10−1 8.67× 10−1

z 9.85× 10−1 1 1 9.98× 10−1 9.98× 10−1

Table 2.2: Summary of the averaged flow results. By rows, from top to bottom,

the magnitudes are: the overall averaged Nusselt number, the maxima of the aver-

aged local Nusselt and the standard deviation of local Nusselt and their respective

z positions at the vertical hot wall, the maxima of uz and T at the horizontal

mid-height plane and their respective y positions, the maxima of uy and T at the

vertical mid-width plane and their respective z positions.

The time-averaged temperature fields and the streamlines of the averaged flow have
been represented in the figure 2.3. A summary of several first-order statistics is
presented in table 2.2 for direct comparison.

Despite the relatively large range of Rayleigh numbers all them exhibit similar
flow characteristics: thin vertical boundary layers and a large core area with very low
time-averaged velocity and a stratified temperature distribution.

The waves travelling downstream grow up to a point where they disrupt the bound-
ary layers ejecting large unsteady eddies to the core of the cavity. The mixing effect
of these eddies, that throw hot and cold fluid respectively, tends to result in almost
isothermal hot upper and cold lower regions. The point where this phenomenon oc-
curs moves upstream of the boundary layer when the Rayleigh number is increased.
This mixing effect at the top and bottom areas of the cavity, clearly displayed in the
time-averaged solutions (figure 2.3 and 2.4), force the temperature drop in the core
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Figure 2.3: Averaged solutions. From left to right: Ra = 6.4 × 108, 2 × 109,

1010, 3× 1010 and 1011. Top: averaged temperature field. Bottom: streamlines of

the averaged flow. For temperature fields, the isotherms are uniformly distributed

from 0 to 1.
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Figure 2.4: Averaged vertical temperature profiles at mid-width.

of the cavity occurs in a smaller region. The strengthening of the horizontal motion
by means of large unsteady eddies also results into a remarkable thickening of the
boundary layer in the downstream part and consequently a sudden decrease of the
vertical velocity (figure 2.6) and a reduction of the wall-shear stress (figure 2.5).

The averaged temperature and vertical velocity component profiles displayed in
the figure 2.6, show that velocity maxima remain constant (see also table 2.2) and that
identical profiles are obtained for more than half vertical boundary layer when the
lengths are scaled by the laminar Ra1/4 factor. This laminar scaling is also observed
in the table 2.2 for the position of its maxima. Discrepancies only occur from the point
where waves travelling downstream grow large enough to totally disrupt the boundary
layer. This results confirms that in the range of Rayleigh numbers investigated at least
the downstream half vertical boundary layer, where most of the heat transfer occurs,
is still laminar or quasi-laminar.

Thermal stratification in the core of the cavity is one of the basic questions that
still remains open. Comparison between numerical and experimental results (see Salat
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Figure 2.6: Averaged temperature (left-hand side of pair) and vertical velocity

(right-hand side of pair) profiles at z = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

Each vertical subdivision represents 0.5 units for temperature and 0.2 units for

vertical velocity. For the pair of plots on the left, the abscissa scale factor is 4y and

for the pair on the right, is 4yRa1/4.
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Case Ra Nu Nu/Ra1/4 Nu/Ra1/3 Nudown Nudown/Ra1/3

A 6.4× 108 49.24 0.3096 0.05713 2.98 3.45× 10−3

B 2× 109 66.63 0.3151 0.05288 4.54 3.60× 10−3

C 1010 101.94 0.3224 0.04732 7.91 3.67× 10−3

D 3× 1010 137.22 0.3297 0.04416 10.77 3.47× 10−3

E 1011 194.48 0.3458 0.04190 18.70 4.03× 10−3

Table 2.3: Nusselt number and correlations

et al. [55] for a detailed overview) for a wide range of width/height aspect ratios give
completely different results. Experimental studies yield a dimensionless stratification
of about 0.5 while numerical simulations predict values about 1. According to the
results obtained by Salat et al. [55], Soria et al. [4] and Trias et al. [3] the two-
dimensional assumption is not a critical issue to explain these differences. Salat et
al. [55] also concluded that introducing experimental temperature measurements in
the top and bottom wall instead of assuming adiabaticity hypothesis do not improve
the discrepancies in the thermal stratification.

Our DNS results for the two highest Rayleigh numbers shows that thermal strat-
ification clearly tends to increase with the Rayleigh number: 1.25 and 1.41 for Ra =
3 × 1010 and 1011, respectively. This phenomenon seems to be directly related with
the displacement of the transition point of the vertical boundary layer to more down-
stream positions.

2.3.2 Heat transfer

Results for the time-averaged and spatial mean Nusselt numbers3 are given in ta-
ble 2.3. Is is shown that Nusselt number correlation is much closer to the Ra1/4

correlation for laminar flow than the Ra1/3 correlation for turbulent flow. The reason
for such behaviour is that most of the heat transfer occurs in the upstream part of the
boundary layer where it is almost laminar. To confirm this point we have computed
the mean Nusselt number at the most downstream part where the boundary layer
becomes turbulent. In the last column of table 2.3, we see that the Nudown, that
has been integrated from z = 0.8 to z = 1 over the hot sidewall, is very close to the
classical Ra1/3 turbulent scaling. This confirms that at the most downstream part
boundary layers become turbulent.

The averaged local Nusselt distribution and their standard deviations are displayed
3The reference heat flux is given by λ∆T/Lz , where λ is the thermal conductivity. Thus, the

dimensionless local Nusselt number at the vertical hot wall is given by Nu = − ∂T
∂y

∣∣∣
y=0
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in figure 2.7. Large fluctuations are observed in the downstream part of the boundary
layer whereas upstream remains almost laminar. Trias et al. [3] observed that this
region of large fluctuations seems to remain almost invariant slightly above z = 0.6
position while the peak moves upstream for Rayleigh number up to 1010. Here, for
the two highest Rayleigh numbers, it is observed that region of large fluctuations is
extended to more downstream position.

Nusselt number correlation

An approximation of the Nusselt number can be presented in the following form

Nu = c1

(
1− zTr

)
Ra1/3 + c2z

TrRa1/4 (2.18)

where zTr is the point where transition occurs at the vertical boundary layer. Doing
so, we are splitting vertical boundary layer into a downstream laminar part that
follows the Ra1/4 correlation and an upstream turbulent part that follows the 1/4
power law. However, equation (2.18) needs to know the value of the transition point
zTr. In order to circumvent this, we can replace zTr by the following power law form,

zTr = 1− aRab (2.19)

Using least squares, constants a and b (with the data obtained in the present work)
were determined to be 2.2636 × 10−4 and 2.9462 × 10−1, respectively. Now, using
least square criteria again, constants c1 and c2 are found out to be 4.6580× 10−2 and
3.2148× 10−1, respectively with a maximum error of around 1.8% in the investigated
range. Hence, proposed correlation (2.18) finally results into

Nu = c1aRa(1/3+b) + c2Ra1/4 − c2aRa(1/4+b), 6.4× 108 ≤ Ra ≤ 1011 (2.20)

where,

c1 = 4.6580× 10−2 c2 = 3.2148× 10−1

a = 2.2636× 10−4 b = 2.9462× 10−1 (2.21)

2.3.3 Flow dynamics

A general view of the several instantaneous temperature fields is displayed in the
figures 2.8, 2.9. At first sight, we can see that when the Ra number is increased
important differences are observed. With the aim to investigate the origin of such
differences and the physical mechanisms involved, several flow dynamics aspects are
analyzed and discussed in the next sections.
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Figure 2.7: Local Nusselt number distribution (solid lines) and their standard

deviation (dashed lines): (a) Ra = 6.4× 108, (b) Ra = 2× 109, (c) Ra = 1010,

(d) Ra = 3× 1010 and (e) Ra = 1011.
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Instantaneous fields

Flow dynamics of the three lowest Rayleigh numbers considered here were analyzed
in detail by Trias et al. [3]. They focussed not only on the Ra-number dependence
but also on the influence of the two-dimensional assumption. As expected, sig-
nificant differences were observed between two- and three-dimensional results. For
two-dimensional simulations the oscillations at the downstream part of the vertical
boundary layer are clearly stronger, ejecting large eddies to the cavity core. In the
three-dimensional simulations these large eddies do not persist and their energy is
rapidly passed down to smaller scales of motion. It yielded on a reduction of the
large-scale mixing effect at the hot upper and cold lower regions and consequently
the cavity core still remains almost motionless. Regarding the boundary layers it was
observed that the transition point clearly moves upstream for the three-dimensional
simulations. It was observed that all these differences become more marked for higher
Rayleigh numbers. For further details about the discrepancies between two- and three-
dimensional results and the physical mechanisms involved the reader in referred to
our previous works [4, 3].

Here we focuss our attention on the dependance of the results respect to the Ra-
number. In figure 2.8 it is clearly observed that boundary layers remain laminar in
their upstream parts up to the point where they become totally disrupted and large-
eddies are ejected. Although the position of this point tends to move to upstream
position

Flow dynamics if the lowest Rayleigh number considered here was analyzed in de-
tail by Soria et al. [4] concluding that both two- and three-dimensional configurations
have a motionless and stratified cavity core and concentrate important fluctuations
in the two downstream corners of the cavity. The main differences occur in the ver-
tical boundary layers. For the two-dimensional simulation it is almost totally stable
and only periodic oscillations can be observed in the most downstream part of the
boundary layer while in the three-dimensional simulation instabilities generated in
the upstream corner moves downstream resulting on considerable values for turbu-
lent statistics at the vertical boundary layer, as discussed in next sections. Also, in
the two-dimensional results, the vortices at the end of the vertical boundary layers
are more vigorous and stable, as can also be appreciated in the streamline maps
displayed in the figure 2.3 (bottom left). Occasionally, in the three-dimensional sim-
ulation, there are large instability episodes where the three-dimensional structures
generated at the top right and bottom left areas of the cavity propagate across all the
vertical boundary layers. However, this phenomenon (that has not been observed in
the two-dimensional results) is too infrequent to generate significant values of u′xu′x
and u′yu′y at the vertical boundary layers.

Finally figure 2.9 shows 3D structures of the flow with highest Rayleigh number.
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Figure 2.8: Representative instantaneous isotherms. From left to right: Ra =
6.4×108, 2×109, 1010, 3×1010 and 1011. The isotherms are uniformly distributed

from 0 to 1.
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Case Ra C fBV

A 6.4× 108 0.131 1.02 0.135
B 2× 109 - 1.01 0.135
C 1010 0.133 1.01 0.135
D 3× 1010 0.141 1.25 0.150
E 1011 0.147 1.41 0.159

Table 2.4: From left to right: fundamental frequencies of the Nuc, dimensionless

stratification in the core of the cavity and Brunt-Väisälä frequency

Top of the figure is a time evolution of the flow as it develops to the statistically
stationary state. Bottom of the figure is zoom to turbulent transition area.

Internal waves

The velocities in the cavity core become much smaller compared to those in the ver-
tical boundary layers for increasing Rayleigh number. However, simulations show
that the cavity core is in motion and isotherms in this region oscillate around the
mean horizontal profile. Since the cavity core remains well stratified (see figure 2.3
and 2.4), this phenomenon can be attributed to internal waves. All the normalized
density power spectra of the mean Nusselt number through the vertical midplane,
Nuc, displayed in figure 2.10, are quite similar. In table 2.4, these fundamental os-
cillation frequencies are compared with the dimensionless Brunt-Väisälä frequencies:
fBV = (CPr)0.5/(2π) (see Lighthill [56], for example), where C is the dimensionless
stratification of the time-averaged temperature. A fairly good agreement is observed
for the range of Rayleigh numbers investigated. Following the same arguments ex-
posed in [3], we conclude that eddies ejected from the vertical boundary layers at the
how upper and cold lower regions are large enough, even for the highest Rayleigh
number here considered, to be characterized by excitation frequencies ω smaller than
the Brunt-Väisälä frequency and maintain an internal wave of motion.

Turbulent statistics

The distributions of turbulent kinetic energy k = u′iu
′
i, its total viscous dissipation

rate εν = (∇u′ + (∇u′)t) : ∇u′, the temperature variance T ′T ′, the turbulent heat
flux u′3T ′ and two of the four non-zero components of the Reynolds stress have been
represented in figures 2.11- 2.16. It should be noted that, as the domain is homo-
geneous in the x1-direction, all the statistics are independent of x1, ux = 0, and
the fluctuations of ux are uncorrelated with the fluctuations of other variables, i.e.,
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Figure 2.9: Representative instantaneous temperature iso-surfaces for highest

Ra number 1011. Time evolution of the flow to statistically stationary state (top),

Zoom view of the turbulent transition area (bottom left), 2D section with zoom to

transition area (bottom right)
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Figure 2.11: Distribution of turbulent kinetic energy k. From left to right:

Ra = 6.4× 108, 2× 109, 1010, 3× 1010 and 1011.

u′xu′y = u′xu′z = u′xT ′ = 0, except statistical noise that decreases with the integration
period.

For the range of Rayleigh numbers here investigated we observe a bad correlation
between two important quantities for turbulence modelling such as k and εν . Near
the verticals walls, the non-slip boundary conditions for velocity make ∂u′z/∂x2 be
the leading term of the viscous dissipation rate εν and its maxima be located very
close to the wall while k is essentially contributed by u′yu′y whose maxima is located
outside the boundary layer. The horizontal profiles at z = 0.8, a region with high
values of turbulent statistics, displayed in the figure 2.3.3 show more clearly that the
these two quantities are uncorrelated near the vertical wall where turbulence is more
intense.

Energy budgets

The global kinetic energy balance per volume unit is given by (see [3], for details)

Pr

V

∫

Ω

(
uzT + u′zT ′

)
dΩ

︸ ︷︷ ︸
Eg

=
Pr

V Ra0.5

∫

Ω

(
φ (u) + φ (u′)

)
dΩ

︸ ︷︷ ︸
Ed

(2.22)

where V is the cavity volume and φ (u) = (∇u + ∇ut) : ∇u. That is, for a statis-
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Figure 2.12: Distribution of turbulent viscous dissipation εν . From left to right:

Ra = 6.4× 108, 2× 109, 1010, 3× 1010 and 1011.

Figure 2.13: Distribution of temperature variance T ′T ′. From left to right:

Ra = 6.4× 108, 2× 109, 1010, 3× 1010 and 1011.
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Figure 2.14: Distribution of the turbulent heat flux u′zT ′. From left to right:

Ra = 6.4× 108, 2× 109, 1010, 3× 1010 and 1011.

Figure 2.15: Distribution of the Reynolds stress component u′yu′y. From left to

right: Ra = 6.4× 108, 2× 109, 1010, 3× 1010 and 1011.
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Figure 2.16: Distribution of the Reynolds stress component u′zu′z . From left to

right: Ra = 6.4× 108, 2× 109, 1010, 3× 1010 and 1011.

tically stationary flow, Eg, the averaged kinetic energy generation rate (only due to
the buoyancy forces in our case) must be equal to Ed, the averaged kinetic energy
dissipation rate due to viscous forces. Since the instantaneous kinetic energy balances
are exactly satisfied, the energy imbalance expression

∣∣Eg − Ed

∣∣ /Eg can be used to
control if averaging time is long enough. The values of Eg obtained in the different
simulations can be found in table 2.5. At first sight, we see that the dimensionless
overall kinetic energy generation rate Eg tends to decrease with the Rayleigh number
following a correlation closer to Ra−1/4, at least for the three lowest Ra-numbers.
At section 2.3.1, we saw that time-averaged temperature and vertical velocity profiles
for different Rayleigh numbers collapse when the laminar Ra1/4 scaling is used for
lengths (see figure 2.6). We also saw that such laminar behaviour is exhibit in the
upstream part of the boundary layers, where most of the kinetic energy is generated,
and extends for more than half of the cavity. Thus, it is not surprising the Ra1/4

scaling shown by the overall kinetic energy generation rate Eg. Regarding to the
two highest Rayleigh number such correlation seems to be lost probably due to the
fact, as we saw in previous sections, that the transition point clearly moves upstream
resulting on a smaller region of laminar or quasi-laminar behaviour.

With respect the turbulent dissipation term, PrRa−0.5/V
∫
Ω

φ (u′)dΩ, there is not
a clear tendency. Its peak tends to grow with the Ra-number but the area of large
values shrinks to the two vertical boundary layers (see figure 2.12). Finally, turbulent
generation term, Pr/V

∫
Ω

u′zT ′dΩ displays completely different tendencies.
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Figure 2.17: Horizontal profiles at z = 0.8 of the turbulent kinetic energy k
(solid line) and its viscous dissipation rate εν (dashed line): (a) Ra = 6.4 × 108,

(b) Ra = 2× 109, (c) Ra = 1010, (d) Ra = 3× 1010 and (e) Ra = 1011.
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Case Ra Eg = Ed
Pr

V Ra0.5

∫
Ω

φ (u′)dΩ Pr
V

∫
Ω

u′zT ′dΩ EgRa1/4

A 6.4× 108 1.996× 10−3 5.33× 10−5 4.71× 10−6 0.317
B 2× 109 1.524× 10−3 8.08× 10−5 2.36× 10−6 0.322
C 1010 1.023× 10−3 6.65× 10−5 −5.48× 10−7 0.324
D 3× 1010 8.205× 10−4 9.58× 10−5 2.76× 10−6 0.341
E 1011 6.647× 10−4 1.29× 10−4 1.13× 10−5 0.374

Table 2.5: Global kinetic energy balances

2.4 Conclusions

A set of complete direct numerical simulations of a buoyancy driven flow in a differen-
tially heated air-filled (Pr = 0.71) cavity of aspect ratio 4 and Rayleigh numbers up
to 1011 has been presented. The correctness of the code has been verified using the
method of manufactured solutions, that ensures that the order of accuracy is in good
agreement with the theoretical expectation in the whole domain. Both a conventional
PC cluster and the MareNostrum supercomputer have been used to carry out the sim-
ulations. An explicit scheme has been used for temporal integration and second and
fourth-order symmetry-preserving spatial discretization. These schemes preserve the
global kinetic energy balances even for very coarse meshes. The parallel algorithm is
based on spatial domain decomposition. A new parallel solver (KSFD) has been used
for the Poisson equations. The main features of the flow, including the time-averaged
flow structure, the turbulent statistics, the global kinetic energy balances and the
internal waves motion phenomena, have been presented and described.

All simulations share some basic flow features: a stratified cavity core, recirculating
structures near the downstream corners and thin vertical boundary layers that remain
laminar at their upstream part up to a point above the mid-height where transition
occurs. Periodic oscillations are amplified in the boundary layer and trigger non-
linear effects provoking the transition. With respect to the centreline dimensionless
thermal stratification, all the numerical simulations performed in this work give values
close to 1 for the three lowest Ra-numbers and larger values (1.25 and 1.41 for the
two highest Ra-numbers, respectively).
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Chapter 3

Extension of the KSFD
Poisson solver for fully-3D
DNS of turbulent flows on
supercomputers

Main contents of this chapter have been published in:

A. Gorobets, F. X. Trias, M. Soria, C. D. Perez-Segarra and A. Oliva On the extension of
the Krylov-Schur-Fourier Decomposition Poisson solver for fully-3D DNS of turbulent flows
on supercomputers, Parallel CFD 2008 Conference.

Abstract.
Many important applications in the computational fluid dynamics (CFD) field demand

huge computing power and need parallel computers to be feasible. The Poisson equation,
which arises from the incompressibility constraint and has to be solved at least once at each
time step, is usually the main bottleneck from a parallel point of view. In this context,
efficient and scalable algorithms for the solution of the Poisson equation on a wide range of
parallel systems are of high interest.

In the chapter 1 a scalable algorithm for Poisson equation was proposed. It performs well
on both small clusters with poor network performance and supercomputers using efficiently
up to at least a thousand of CPUs. This algorithm named Krylov-Schur-Fourier Decom-
position (KSFD) can be used for problems in parallelepipedic 3D domains with structured
meshes and several obstacles can be placed inside the flow. However, since a FFT decom-
position is applied in one direction mesh is restricted to be uniform in this direction an only
2D extruded obstacles can be placed.

This chapter is devoted to extend the previous algorithm to eliminate these limitations.

The most promising results are obtained when combining a two-level multigrid (MG) and the

KSFD method. Finally, illustrative DNS results of a turbulent channel flow with a mounted

cube are presented.
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3.1 Introduction

Direct numerical simulation (DNS) has become an important area of contemporary
fluid dynamics, because its interest for improving the understanding of the physics
of turbulence and because it is an essential tool for the development of better tur-
bulence models. Recently, relevant improvements on turbulence modelling based on
symmetry-preserving regularization models for the convective (non-linear) term have
been developed [57, 58, 59]. Since now, they have been successfully tested for a differ-
entially heated cavity at high Rayleigh numbers [58, 59]. At this stage, high resolution
DNS results at of relatively complex geometries and configurations are of extreme im-
portance for further progress. The main idea behind this is to assess the validity
of turbulence models in more realistic configurations, understand their limitations
and finally improve them. Therefore, this is really a crucial issue since turbulence
modelling ultimately becomes an essential tool for engineering applications. In this
context the availability of efficient and scalable Poisson solvers for fully-3D geometries
are of extreme importance.

The DNS can be classified by the flow complexity represented by the number of
wall-bounded directions. Typical DNS examples are represented in table 3.1

Wall-orthogonal directions DNS example Mesh size
0 Isotropic turbulence 6.8 ∗ 1010 [60]
1 Channel flow 2.0 ∗ 1010 [61]
2 Natural convection in DHC 1.1 ∗ 108 (chapter 2)
3 Surface mounted cube about 107 [62]

Table 3.1: Typical DNS cases

The isotropic turbulence and channel flow are the most well studied cases solved
with extremely fine meshes. While cases with 2 and more wall-orthogonal directions
requires much more computational cost per node due to the limitations and inappli-
cability of the fast numerical methods.

In this context, efficient and scalable Poisson solvers applicable to the DNS of
fully-3D flows with 3 wall-orthogonal directions are of high interest. Verification of
the turbulence models on this class of problems especially for high Reynolds numbers
could be an important step in development of LES methods.

In the chapter 1 the Poisson solver is proposed. The KSFD solver is based on
combination of FFT and Conjugate Gradient (CG) method [16] preconditioned with
a direct Schur Decomposition (DSD) method [1]. The Fourier decomposition is used
to uncouple the original 3D Poisson equation into a set of 2D planes. Then, each
2D problem in solved using a CG method preconditioned by a DSD algorithm. To
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do that, each plane is divided into blocks and each of them in solved with the DSD
solver. However, the use of the FFT has the following restrictions:

• Mesh must be uniform in the direction where FFT is applied.

• Obstacles geometry is restricted to be 2D extruded on the FFT direction.

This kind of geometry with restrictions will be denoted as periodic-3D geometry
as it is in fact an extrusion of 2D geometry with a constant mesh step. An example
of extruded geometry is shown on figure 3.1.

Figure 3.1: Surface mounted square cylinder in a channel - example of extruded

geometry

For example a square infinite cylinder in a channel with periodic conditions could
be easily solved with the KSFD solver. But it cannot be applied if there is a cube
instead of cylinder because then there are boundary layers that have to be resolved
by mesh concentration.

The present chapter is devoted to the extension of the KSFD solver to be able
to solve fully 3D cases with non-uniform mesh in all three spatial directions and
with fully 3D obstacles. The fairly good scalability of the original method should be
preserved with a reasonable efficiency. The resulting extended method is combining
a two-level multigrid (MG) with the KSFD method.
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3.2 Numerical methods for DNS

The non-dimensional incompressible Navier-Stokes equations in a parallelepipedic do-
main Ω = (0, Lx)× (0, Ly)× (0, Lz) ⊂ R3 in primitive variables are considered

∇ · u = 0 (3.1a)
∂u

∂t
+ (u · ∇)u =

1
Re

∇2u−∇p (3.1b)

where Re is the non-dimensional Reynolds number.

Equations (3.1a-3.1b) are discretized on a staggered grid in space by fourth-order
symmetry-preserving schemes [12]. For the temporal discretization, a fully explicit
dynamic second-order one-leg scheme [12] is used for both convective and diffusive
terms. Finally, to solve the pressure-velocity coupling a classical fractional step pro-
jection method is used. Further details about the time-integration method can be
found in [2, 3].

3.3 Extension of the KSFD algorithm for fully-3D
problems

Extension is based on approximation of fully-3D case by means of some periodic-
3D case. This periodic-3D case can be solved by KSFD method while solution of
the original fully-3D case is provided by an overlying iterative method. It can be a
multigrid method (MG) which have periodic-3D case as a second level or for example
a conjugate gradient method (CG) preconditioined with the periodic-3D case.

In present work only the one approach using MG is considered as it substantially
outperformed the CG option in the preliminary convergence tests. So called MG-
KSFD method is a two-level Multigrid (MG) method that uses KSFD as a second-level
solver. CG method with local preconditioner is used as a smoother.

In general the idea of the MG-KSFD method is that lower frequencies of the error
(most difficult for an iterative solver) are eliminated effectively by the second level
solver while higher frequencies are effectively killed by a smoother.
The original fully-3D system to be solved is denoted

A3Dx3D = b3D (3.2)

and the periodic-3D system is

Ãx = b (3.3)
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where A3D and Ã are symmetric positive definite matrices.
Multigrid iteration has following algorithm

Algorithm on i-th iteration:

1. Smoother: Obtain approximate solution x3D
i of (3.2) using CG with local pre-

conditioner. It does not require any data exchange.

2. Calculate residual r3D
i of system (3.2).

3. Transform residual to second level ri = Qr3D
i

4. Solve error equation Ãzi = ri on second level using KSFD algorithm.

5. Transform error from second level periodic-3D to fully-3D: z3D
i = Pzi

6. Correct x3D
i+1 = x3D

i + z3D
i

Here matrixes Q and P represent remapping between the levels - restriction and
prolongation operators.

Further several aspects will be considered in details.
The idea behind of the MG-KSFD method is the following: KSFD algorithm solving
periodic-3D case efficiently eliminates low-frequencies of error and smoother provides
fast convergence on higher frequencies. This way, the number of iterations is substan-
tially reduced compared with the CG-KSFD approach.

3.3.1 Solution of the second level

Solution of the second level is provided by the KSFD solver described in the chapter
1. Both levels have equal number of nodes in each direction. Remapping is not
required as the both levels have equal mesh size. Also no additional data allocation
is needed. This way simplifies implementation, saves memory and computing time.
It provides stable convergence of the multigrid method. But to be sure in efficiency
of this straightforward approach a comparative convergence test was performed. It is
described in the further.

3.3.2 Remapping between the two levels

A first order conservative interpolation was used as an example of remapping to com-
pare with simplified approach without remapping (or in other words when restriction
and prolongation operators are identity matrixes). This interpolation preserves the
integral of the quantity:

N∑

i=1

Ωixi =
N∑

i=1

Ω̃ix̃i (3.4)
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where Ωi and Ω̃i are control volumes of first and second level respectively, xi and
x̃i are values from first and second level. This conservative inter-level transfer pro-
vides stability and convergence of the iterative process. Example of simple first order
conservative interpolation is shown on figure 3.2.

Figure 3.2: 1D example of conservative interpolation. The bars represent values

in the control volumes.

The comparative tests showed that this interpolation provides a stable convergence
but it gives no advantage in convergence in comparison with with the case when
restriction and prolongation operators are just identity matrixes. This result confirms
efficiency of the simplified approach.

Probably the use of some more complicated interpolation may provide better effect
on convergence. But this question is left for the future actions and is beyond the scope
of the present work.

3.3.3 Modification of the stencil for solid wall BC

For the periodic boundary conditions on FFT direction the matrix Ã of the second
level (3.3) is constructed the same way as matrix A3D of system (3.2) (but on a
different grid and ignoring presence of the obstacle). The KSFD method in this case
is used without any modifications.

But in case of solid wall boundaries on the FFT direction some modifications are
required. Modification of the scheme stencil near the boundaries is required to make
matrix compatible with FFT. The matrix Ã has a block structure as it shown in
chapter 1. Originally the blocks to be diagonalized with FFT (in case of 2-nd order
approximation) have form (3.5).
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Ap
j,k =




ap + aew aew

aew ap aew

. . . . . . . . .
aew ap aew

aew ap + aew



∈ RNx×Nx (3.5)

While to be compatible with FFT blocks must have form for example like (3.6).

Ãp
j,k =




ap aew

aew ap aew

. . . . . . . . .
aew ap aew

aew ap



∈ RNx×Nx (3.6)

The boundary nodes in the system for Pressure equation are uncoupled and can
have arbitrary values. They are not taken into account as they are disconnected from
the stencil. It is done by modification of the stencil near boundaries - a leg that
connects boundary node with its inner neighbor is removed (corresponding coefficient
is set to zero). In the original way 3.5 the value of this coefficient is added to the
diagonal element (which has the opposite sign). This way contribution of the leg is
eliminated. For the second level changing of diagonal element is not allowed by FFT,
so diagonal element is just left unchanged providing blocks of FFT compatible form
3.6. Figure 3.3 shows difference in stencil construction near the boundary.

ea ap aw
+

Original

0
ewa ap aew

Uniform, adapted for FFT

0

Figure 3.3: Stencil modification near the boundary
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Also FFT must use different transformations and eigenvalues than in a periodic
case. The Fourier transform is

yj =
1
n

(
y0 + 2

n−1∑

i=1

yicos(ji
π

n
) + (−1)jyn

)
, j = 0, ..., n (3.7)

The inverse Fourier transform is

yj =
1
2

y0 +
n−1∑

i=1

yicos(ji
π

n
) +

1
2
(−1)jyn, j = 0, ..., n (3.8)

Where n = Nx − 1 and Nx is the number of nodes on FFT direction.
The eigenvalues are following

λj = ap +
m∑

i=1

ai
ew cos(

π

n
i), j = 0, ..., n (3.9)

Where m is the size of the stencil leg.
Matrixes of the first and second levels A3D and Ã are singular. It should be noted

that in case of solid wall BC the image of the original matrix im(A3D) is different
from the image of second level matrix Ã. This leads to incompatibility of the second
level system while original system is compatible. This affects negatively convergence
and may lead multigrid to fail. To avoid this situation matrix Ã must be ”patched”
to remove singularity. This can be done by changing one diagonal element of the first
plane after FFT transformation ãi

p = 1.1 ∗ ai
p. This of course will violate residual of

original system in this point but it doesn’t spoil the overall convergence. This way
provides stable convergence.

3.4 Convergence and performance issues

Performance of the MG-KSFD solver depends on many factors. Es an example a brief
list of factors is following.

1. Mesh size - number of iterations growth with number of nodes

2. Mesh geometry. In particular, mesh concentration factors on FFT direction can
substantially affect convergence

3. Reynolds number

4. Number of smoother iterations per multigrid iteration
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5. Preconditioner of the smoother

6. Accuracy of second level solution

This list can be continued. All of the this factors should be taken into account to
achieve optimal performance of the solver. Throughout optimization is beyond of the
scope of present work and is left for future work. Only several first priority issues are
considered.

Scalability tests were performed to estimate performance on a large DNS. Average
number of iterations was obtained for meshes of different size varying from 2× 105 to
1.2× 107 nodes (surface mounted cube in a channel, Re = 5000 based on cube size).
Mesh is described in section 3.5.1. Residual criteria for the iterative solver is chosen
to provide on each time step initial divergence norm decrease 105 times. Multigtid
solver has following configuration.
Smoother precondition: Jacobi (diagonal scaling)
Smoother iterations: 15
Restriction operator: Identity
Precision of second level: tolerance 10−2

Prolongation operator: Identity
Up to 200 CPU were used in the tests. Results are represented in the figure 3.4.
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Figure 3.4: Scalability test: number of iterations with mesh growth
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The increase of the mesh size 60 times leads to growth of the number of iterations
about 4.5 times. As an example of the sensitivity to the smoother iterations number,
following demonstration was performed: on 1.2 × 107 nodes mesh the number of
smoother iterations was changed from 15 to 25. Number of overall multigrid iterations
reduced from 27 to 13 providing substantial increase of performance.

Finally the solver demonstrates moderate scalability and it gives an estimation
of performance on larger meshes. According to preliminary estimations the current
configuration of the solver can be used to perform DNS with meshes up to 3 × 107

5× 107 nodes.

3.5 Problem under consideration: surface mounted
cube

Surface mounted cube in a channel is a typical DNS problem of rather high interest
that cannot be solved with KSFD. It requires a non uniform mesh in all directions to
resolve the obstacle region well. The obstacle itself makes a Poisson matrix incompat-
ible with an FFT-based method. Hence it is a good case for MG-KSFD application.

h

14h

3h

6h

X

Y

Z

u

Y X

Z

X

Figure 3.5: Surface mounted cube in a channel

3.5.1 Boundary conditions

The choice of the inflow boundary conditions (BC) may lead to a discussion. It cab
be a dynamic profile obtained from separate channel flow DNS, it can be a periodic
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buffer area that let flow develop to fully turbulent, it can be a stationary profile, etc.
In this case the choice was a compromise between two requirements. From one

point of view definition of BC must be clear and easy to reproduce in order to provide
a convenient case for the turbulence models development. From another point of view
BC must be as close to reality as possible. A comparison described further shows that
chosen inflow BC provide adequate results.

• X direction
There are two BC on this direction - inflow and outflow. A stationary analytical
profile for turbulent flow is given on the input. The profile specifies velocity
components as follows:

u = min (Yp, k log (max(1, Yp)) + B) , v = 0, w = 0 (3.10)

where k = 1
4 , B = 5, Yp = 1

H Reτ min(y, H − y).

outflow BC are null-derivative with restriction u ≥ 0. For stability the outflow
mass flux is forced (by scaling) to be exactly equal to the inflow flux.

• Y direction
Periodic boundary conditions (PBC)

• Z direction
Solid non-slip walls

3.5.2 Mesh construction

The mesh is not uniform in all directions and it is based on the following mesh
concentration function:

xi =
L

2

[
1 +

tanh (γ [2(i− 1)/N − 1])
tanh γ

]
(3.11)

where L is the length of the mesh fragment, N is the number of nodes in the fragment
and γ is the concentration factor. γ = 0 corresponds to uniform mesh, bigger γ
gives more concentration at the fragment boundaries. Each direction of the mesh
is decomposed into several fragments as it is shown on figure 3.6. Each fragment
can have its own concentration factor to provide better discretization. The number of
nodes in each fragment is selected automatically to satisfy the condition of equal mesh
step at the fragments joint. The proportion of nodes for each fragment is governed
by the relation of concentration factors. Fragment with smaller γ gets more nodes.

In the case considered the mesh is specified by the 11 parameters which are num-
bers of nodes Nx, Ny, Nz and following mesh concentration factors:
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Figure 3.6: Mesh overview

1. X direction
Mesh has 3 fragments on X direction which are specified by concentration factors
γx1, γx2, γx3.

2. Y direction
On Y direction mesh is specified by 2 concentration factors γy1, γy2.

3. On Z direction mesh concentration factors are γz1, γz2, γz3.

3.6 Set of stages performed to complete the DNS

1. Verification of BC

Series of preliminary DNS of the surface mounted cube were carried out to
chose the inflow boundary conditions. Several inflow conditions were under
consideration:
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• Constant velocity profile

• Analytical average turbulent profile

• Averaged turbulent profile obtained from channel flow DNS

• Dynamic profile obtained from channel flow DNS

• Periodic buffer zone1

The analytical average turbulent profile was chosen as it provides clear and
simple definition needed for turbulence models development. At the same time
it provides adequate physically realistic results. It was verified by a comparison
of results with a similar DNS [63] that have dynamic inflow profile obtained
from a channel flow DNS. When performing DNS for the comparison it was
noticed that flow was very sensitive to the distance from the inflow BC to the
cube. To avoid this in the following primary DNS, domain geometry verification
was performed to ensure that the input is far enough.

2. Verification of the domain geometry
Preliminary DNS was performed using a small mesh. Distance from the cube to
the inflow was chosen minimal where average vertical velocity still is zero (see
fig. 3.7). Distance to the outflow was defined the same way.

3. Optimization of the mesh parameters
The mesh parameters were computed to minimize the flow gradients on the
computational space for a set of representative instantaneous maps.

4. Mesh refinement at lower Re=1870 (based on the cube height)
5 preliminary DNS were performed for mesh refinement at lower Re (corresponds
to Reτ ) that requires smaller meshes. After the mesh size for this Re was
verified, the mesh size for the primary DNS was obtained by increasing the
number of nodes on each direction proportionally to Reτ .

5. Primary DNS
The primary DNS was performed on MareNostrum supercomputer of BSC using
300 CPU. The case parameters are following:
Re = 7220 (Reτ=590)
Cube height = 1,
Channel height = 3,
Channel width = 6,
Channel length = 14,

1Velocity profile from the flow-orthogonal plane somewhere between input BC and the cube, far
enough from both, is picked up and set to the inflow BC each time step. Mass flux is forced to be
preserved.
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Figure 3.7: Choice of the cube position. Average vertical velocity profile in the

middle of the channel. Inflow is placed where vertical velocity fades to zero

Distance from inflow BC to cube = 7,
Mesh size 1.6× 107

See the figure 3.5 for the domain overview.

The results of the DNS are to be postprocessed and published. The primary DNS
consumed about 100000 CPU hours on the MareNostrum supercomputer. All the
preliminary DNS and solver tests were performed on the MVS10000 supercomputer
of the Russian academy of science. Illustrative snapshots of instantaneous fields are
represented on figure 3.8.
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Figure 3.8: Surface mounted cube in a channel. Instantaneous maps of kinetic

energy averaged on periodic direction (top) and iso-surfaces (middle), pressure iso-

surfaces with streamlines (bottom)
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Chapter 4

Conclusions and future
research

4.1 Concluding remarks

A brief list of main results of the thesis work

• KSFD solver
It was developed on a base of Schur-Fourier Decomposition method [2] and
Krylov conjugate gradient method. The solver can be efficiently used on both
small cluster and supercomputers using up to at least 1024 CPU. The solver is
applicable to DNS or LES with mesh size more then 108 nodes using 4-th order
scheme.

• DNS of a differentially heated cavity (DHC) with Ra = 1011

The challenging-size DNS using 512CPU and mesh of 1.1 × 108 unsing 4th or-
der scheme was performed on Marenostrum supercomputer. The DNS demon-
strated scalability and performance of the KSFD solver.

• Contribution to the LES validation basis
The set of three DNS of differentially heated cavity was performed for Rayleigh
numbers 1010, 3× 1010, 1011. Together with previous results [3] [4] it gives a
relatively wide range of Ra-numbers from weak to fully developed turbulence.

• MG-KSFD solver
An extension of the KSFD solver with multigrid overlay was developed to solve
fully 3D problems with 3 wall-bounded directions using non-uniform mesh in
all directions and 3D obstacles in the flow.

• DNS of a surface mounted cube
The DNS (mesh size 1.6×107 nodes) was performed using 300CPU on MareNos-
trum supercomputer.

107
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4.2 Future research

Future research can be considered in several aspects.

4.2.1 Implementation aspects

Further development of the DNS/LES code includes several directions

• Algebraic kernel replacement
In-house algebraic operation implementations and local solvers can be replaced
with one of the widely used linear algebra libraries (BLAS, etc). This may
substantially improve overall performance of the code.

• Memory access optimization
Explicit part of the code that includes operations with complex high-order nu-
merical scheme coefficients takes significant part of the overall CPU time. Ad-
ditional optimization of data structures and memory access may improve per-
formance. Also it may result on reduction of memory consumption.

• Hybrid MPI+OpenMP parallelization
The use of the hybrid parallelization may improve performance on parallel sys-
tems with multi-core nodes. It also provides much more memory for each MPI
process.

4.2.2 Numerical methods aspects

This includes further development of MG+KSFD solver for fully 3D geometries.
There is a lot of work to be done, in particular there are several issues:

• Preconditioner for the smoother
Current implementation has conjugate gradient method with a straightforward
Jacobi preconditioner as a smoother. The search for more efficient smoother is
of high priority.

• Prolongation/resrtiction operators
Currently prolongation and restriction operators are reduced to identity matrix.
Implementation of high-order conservative interpolations and search for better
ways to perform interlevel transfer are to be done.

• FFT based methods
Development of the methods based on FFT transformation on two directions
and applicable for boundary conditions different from periodic.



Appendix A: Parallel CFD ter-
minology

Don’t take it seriously!!!

ShitFD (SFD) - under-resolved, obsolete, poorly defined CFD simulations and algorithms

Differentially Shited Cavity (DSC) - DNS of natural convection in a differentially heated

cavity

Shit Mounted Cube (SMC) - DNS of surface mounted cube in a channel

Open Shame Cavity (OSC) - DNS of natural convection in an open cavity

Open Shit - open source software

Numerical Shit Transfer - Journal of Numerical Heat Transfer

Cucumbers and fluids - Journal Computers and Fluids

Fuckingly huge - common property of Poisson matrix in DNS

Especially fucking - common property of Poisson equation in DNS

Friki Cluster - small cluster without a queue system

Friki DNS - DNS performed on a Friki cluster

Fire fuckin wall - firewall configured with a paranoidal inclination

Incredible shit - poorly optimized CFD code

NightmareNostrum - MareNostrum supercomputer in its early period

Network fuckup - decrease of performance due to slowdown of network operations

Shit paper - any journal paper currently being prepared for publication
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110 Appendix A: Parallel CFD terminology

Brutal Monster (brumon) - high level CFD specialist

Brutal solver - surprisingly fast solver implementation

Brutal DNS - DNS with huge mesh size and computing power demands

Cucumber - any problem to be solved in CFD context

Make love not Krylov - common slogan in a context of solver development
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simulations of two- and three-dimensional turbulent natural convection flows in
a differentially heated cavity of aspect ratio 4. Journal of Fluid Mechanics,
submitted, 2006.
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[28] P. Le Quéré. Accurate Solutions to the Square Thermally Driven Cavity at High
Rayleigh Number. Computers and Fluids, 20:29–41, 1991.

[29] M.R. Ravi, R.A.W.M. Henkes, and C.J. Hoogendoorn. On the high-Rayleigh-
number structure of steady laminar natural-convection flow in a square enclosure.
Journal of Fluid Mechanics, 2??:325–351, 1994.

[30] D.C. Wan, B.S.V. Patnaik, and G.W. Wei. A New Benchmark Quality Solution
for the Buoyancy-Dr0iven Cavity by Discrete Singular Convolution. Numerical
Heat Transfer, part B, 40:199–228, 2001.

[31] T. Fusegi, J.M. Hyun, K. Kuwahara, and B. Farouk. A numerical study of
three-dimensional natural convection in a differentially heated cubical enclosure.
International Journal of Heat and Mass Transfer, 34:1543–1557, 1991.

[32] E. Tric, G. Labrosse, and M. Betrouni. A first incursion into the 3D structure
of natural convection of air in a differentially heated cubic cavity. International
Journal of Heat and Mass Transfer, 43:4043–4056, 2000.
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